Abstract. This paper describes the basic processing model and architecture of Aurora, a new system to manage data streams for monitoring applications. Monitoring applications differ substantially from conventional business data processing. The fact that a software system must process and react to continual inputs from many sources (e.g., sensors) rather than from human operators requires one to rethink the fundamental architecture of a DBMS for this application area. In this paper, we present Aurora, a new DBMS currently under construction at Brandeis University, Brown University, and M.I.T. We first provide an overview of the basic Aurora model and architecture and then describe in detail a stream-oriented set of operators.
This paper presents the design of a read-optimized relational DBMS that contrasts sharply with most current systems, which are write-optimized. Among the many differences in its design are: storage of data by column rather than by row, careful coding and packing of objects into storage including main memory during query processing, storing an overlapping collection of columnoriented projections, rather than the current fare of tables and indexes, a non-traditional implementation of transactions which includes high availability and snapshot isolation for read-only transactions, and the extensive use of bitmap indexes to complement B-tree structures. We present preliminary performance data on a subset of TPC-H and show that the system we are building, C-Store, is substantially faster than popular commercial products. Hence, the architecture looks very encouraging. EMP1 (name, age) EMP2 (dept, age, DEPT.floor) EMP3 (name, salary) DEPT1(dname, floor) Example 1: Possible projections for EMP and DEPT Name Age Dept Salary Bob 25 Math 10K Bill 27 EECS 50K Jill 24 Biology 80K
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.