A new coupled global NCEP Reanalysis for the period 1979-present is now available, at much higher temporal and spatial resolution, for climate studies. T he first reanalysis at NCEP (all acronyms are defined in the appendix), conducted in the 1990s, resulted in the NCEP-NCAR reanalysis (Kalnay et al. 1996), or R1 for brevity, and ultimately covered many years, from 1948 to the present (Kistler et al. 2001). It is still being executed at NCEP, to the benefit of countless users for monthly, and even daily, updates of the current state of the atmosphere. At the same time, other reanalyses were being conducted, namely, ERA-15 (Gibson et al. 1997) was executed for a more limited period (1979-93) at the ECMWF, COLA conducted a short reanalysis covering the May 1982-November 1983 period (Paolino et al. 1995), and NASA GSFC conducted a reanalysis covering the 1980-94 period (Schubert et al. 1997). The general purpose of conducting reanalyses is to produce multiyear global state-of-the-art gridded representations of atmospheric states, generated by a constant model and a constant data assimilation system. To use the same model and data assimilation over a very long period was the great advance during the 1990s, because gridded datasets available before 1995 had been created in real time by ever-changing models and analysis methods, even by hand analyses prior to about 1965. The hope was that a reanalysis,
The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administration's interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administration's National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.
The Atmospheric Infrared Sounder (AIRS), the hyperspectral infrared sounder on the NASA Aqua mission, both improves operational weather prediction and provides high-quality research data for climate studies. The Atmospheric Infrared Sounder (AIRS), and its two companion microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), form the integrated atmospheric sounding system flying on the Earth Observing System (EOS) Aqua spacecraft since its launch in May 2002.1 The primary scientific achievement of AIRS has been to improve weather prediction (Le Marshall et al. 2005a,b,c) and to study the water and energy cycle (Tian et al. 2006). AIRS also provides information on several greenhouse gases. The measurement goal of AIRS is the retrieval of temperature and precipitable-water vapor profiles with accuracies approaching those of conventional radiosondes. In the following text we use the terms AIRS and AIRS-AMSU-HSB interchangeably.1 The HSB ceased functioning after 5 February 2003. This did not have an impact on the accuracy, coverage, or resolution of the AIRS core data product, but its loss has had a significant impact on AIRS research products.A comprehensive set of articles on AIRS and AMSU design details, prelaunch calibration, and prelaunch retrieval performance expectations were published in a special issue of IEEE Transactions on Geoscience and Remote Sensing (2003, vol. 41, no. 2). This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
[1] This paper presents the characterization and validation of retrievals of atmospheric methane (CH 4 ) vertical profiles by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua platform. AIRS channels near 7.6 mm are used for CH 4 retrieval, and they are most sensitive to the middle to upper troposphere, i.e., about 200-300 hPa in the tropics and 400-500 hPa in the polar region. The atmospheric temperature-humidity profiles, surface skin temperature, and emissivity required to derive CH 4 are obtained from retrievals using separate AIRS channels and the Advanced Microwave Sounding Unit (AMSU). Comparison of AIRS retrieved profiles with some in situ aircraft CH 4 profiles implied that the forward model used in the AIRS retrieval system V4.0 required a 2% increase in methane absorption coefficients for strong absorption channels, and this bias adjustment was implemented in the AIRS retrieval system V5.0. As a new operational product in V5.0, AIRS CH 4 were validated using in situ aircraft observations at 22 sites of the NOAA Earth System Research Laboratory, Global Monitoring Division (NOAA/ESRL/GMD), ranging from the Arctic to the tropical South Pacific Ocean, but their altitudes are usually above 300 hPa. The results show the bias of the retrieved CH 4 profiles for this version is À1.4$0.1% and its RMS difference is about 0.5-1.6%, depending on altitude. These validation comparisons provide critical assessment of the retrieval algorithm and will continue using more in situ observations together with future improvement to the retrieval algorithm. AIRS CH 4 products include not only the CH 4 profile but also the information content. As examples, the products of AIRS CH 4 in August 2004 and the difference of CH 4 in May and September 2004 are shown. From these results a few features are evident: (1) a large AIRS CH 4 plume southwest of the Tibetan plateau that may be associated with deep convection during the Asian summer monsoon; (2) high mixing ratios of AIRS CH 4 in southeastern Asia and in the high northern hemisphere in the summer; and (3) the increase of AIRS CH 4 from May to September in the high northern hemisphere that is likely linked with wetland emission but needs more study. Further analysis of these data and its comparison with model data will be addressed in a separate paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.