This article represents a symposium of the 2002 joint meeting of RSA and ISBRA held in San Francisco. Presentations were Neuropathology of alcohol-related cerebellar damage in humans, by Antony J. Harding; Neuropathological evidence of cerebellar damage in an animal model of alcoholism, by Roberta Pentney and Cynthia Dlugos; Understanding cortical-cerebellar circuits through neuroimaging study of chronic alcoholics, by Peter R. Martin and Mitchell H. Parks; and Functional reorganization of the brain in alcoholism: neuroimaging evidence, by John E. Desmond, S.H. Annabel Chen, Michelle R. Pryor, Eve De Rosa, Adolf Pfefferbaum, and Edith V. Sullivan.
Decreased [NAA] and [Cho] in cerebellar vermis indicate a unique sensitivity to alcohol-induced brain injury. Cerebellar [NAA] increased with abstinence, but reduced [Cho] persisted beyond 3 months. Further studies are needed to determine whether low cerebellar [NAA] is a risk factor for, or consequence of, malignant, early-onset alcoholism.
BACKGROUND
Alcohol dependence is associated with neurocognitive deficits related to neuropathological changes in structure, metabolism, and function of the brain. Impairments of motor functioning in alcoholics have been attributed to well-characterized neuropathological brain abnormalities in cerebellum.
METHODS
Using functional magnetic resonance imaging (fMRI), we studied in vivo the functional connectivity between cerebellar and cortical brain regions. Participants were 10 uncomplicated chronic alcoholic patients studied after 5–7 days of abstinence when signs of withdrawal had abated, and 10 matched healthy controls. We focused on regions of prefrontal, frontal, temporal, and parietal cortex that exhibited an fMRI response associated with non-dominant hand finger tapping in the patients but not in the controls. We predicted that fronto-cerebellar functional connectivity would be diminished in alcoholics compared to controls.
RESULTS
Functional connectivity in a circuit involving premotor areas (Brodmann Area 6) and Lobule VI of the superior cerebellum was reduced in the patients compared to the controls. Functional connectivity was also reduced in a circuit involving prefrontal cortex (Brodmann Area 9) and Lobule VIII of the inferior cerebellum. Reductions in connectivity were specific to fronto-cerebellar circuits and were not found in other regions examined.
CONCLUSIONS
Our findings show a pattern in recently abstinent alcoholic patients of specific deficits in functional connectivity and recruitment of additional brain regions for performance of a simple finger tapping task. A small sample, differences in smoking, and a brief abstinence period preclude definitive conclusions, but this pattern of diminished fronto-cerebellar functional connectivity is highly compatible with the characteristic neuropathological lesions documented in alcoholics, and may reflect brain dysfunction associated with alcoholism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.