AAPM Magnetic Resonance Task Group #9 on proton magnetic resonance spectroscopy (MRS) in the brain was formed to provide a reference document for acquiring and processing proton (1H) MRS acquired from brain tissue. MRS is becoming a common adjunct to magnetic resonance imaging (MRI), especially for the differential diagnosis of tumors in the brain. Even though MR imaging is an offshoot of MR spectroscopy, clinical medical physicists familiar with MRI may not be familiar with many of the common practical issues regarding MRS. Numerous research laboratories perform in vivo MRS on other magnetic nuclei, such as 31P, 13C, and 19F. However, most commercial MR scanners are generally only capable of spectroscopy using the signals from protons. Therefore this paper is of limited scope, giving an overview of technical issues that are important to clinical proton MRS, discussing some common clinical MRS problems, and suggesting how they might be resolved. Some fundamental issues covered in this paper are common to many forms of magnetic resonance spectroscopy and are written as an introduction for the reader to these methods. These topics include shimming, eddy currents, spatial localization, solvent saturation, and post-processing methods. The document also provides an extensive review of the literature to guide the practicing medical physicist to resources that may be useful for dealing with issues not covered in the current article.
Decreased [NAA] and [Cho] in cerebellar vermis indicate a unique sensitivity to alcohol-induced brain injury. Cerebellar [NAA] increased with abstinence, but reduced [Cho] persisted beyond 3 months. Further studies are needed to determine whether low cerebellar [NAA] is a risk factor for, or consequence of, malignant, early-onset alcoholism.
BackgroundSemiquantitative methods such as the standardized uptake value ratio (SUVR) require normalization of the radiotracer activity to a reference tissue to monitor changes in the accumulation of amyloid-β (Aβ) plaques measured with positron emission tomography (PET). The objective of this study was to evaluate the effect of reference tissue normalization in a test–retest 18F-florbetapir SUVR study using cerebellar gray matter, white matter (two different segmentation masks), brainstem, and corpus callosum as reference regions.MethodsWe calculated the correlation between 18F-florbetapir PET and concurrent cerebrospinal fluid (CSF) Aβ1–42 levels in a late mild cognitive impairment cohort with longitudinal PET and CSF data over the course of 2 years. In addition to conventional SUVR analysis using mean and median values of normalized brain radiotracer activity, we investigated a new image analysis technique—the weighted two-point correlation function (wS2)—to capture potentially more subtle changes in Aβ-PET data.ResultsCompared with the SUVRs normalized to cerebellar gray matter, all cerebral-to-white matter normalization schemes resulted in a higher inverse correlation between PET and CSF Aβ1–42, while the brainstem normalization gave the best results (high and most stable correlation). Compared with the SUVR mean and median values, the wS2 values were associated with the lowest coefficient of variation and highest inverse correlation to CSF Aβ1–42 levels across all time points and reference regions, including the cerebellar gray matter.ConclusionsThe selection of reference tissue for normalization and the choice of image analysis method can affect changes in cortical 18F-florbetapir uptake in longitudinal studies.
Chronic alcohol-dependent patients have reduced brain volumes and concomitant neurobehavioral deficits that may recover during abstinence. In 10 chronic alcoholic patients, using localized proton magnetic resonance spectroscopy, we found reliable increases during the first 3-4 weeks of abstinence in the concentrations within the superior cerebellar vermis of choline (Cho)-containing compounds relative to the neuronal marker, N-acetylaspartate (NAA). Lesser changes were observed following 1 month of abstinence, and in one of the patients studied longitudinally over 3 months, a marked reduction in the Cho/NAA ratio was associated with relapse. After detoxification, the Cho/NAA ratio correlated with a composite clinical impression of brain functions. The lowest Cho/NAA was observed in a patient with persisting alcoholic dementia, in striking contrast to reduced relative concentrations of NAA reported in dementia of the Alzheimer's type. Possible molecular explanations for these brain metabolic changes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.