Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papilloma virus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA and HRAS, we identified mutations in FBXW7 and NOTCH1. Interestingly, nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type.
Purpose Aggressive cutaneous squamous cell carcinoma (cSCC) is often a disfiguring and lethal disease. Very little is currently known about the mutations that drive aggressive cSCC. Experimental Design Whole exome sequencing was performed on 39 cases of aggressive cSCC to identify driver genes and novel therapeutic targets. Significantly mutated genes were identified with MutSig or complementary methods developed to specifically identify candidate tumor suppressors based upon their inactivating mutation bias. Results Despite the very high mutational background caused by UV exposure, 23 candidate drivers were identified including the well-known cancer-associated genes TP53, CDKN2A, NOTCH1, AJUBA, HRAS, CASP8, FAT1, and KMT2C (MLL3). Three novel candidate tumor suppressors with putative links to cancer or differentiation, NOTCH2, PARD3 and RASA1, were also identified as possible drivers in cSCC. KMT2C mutations were associated with poor outcome and increased bone invasion. Conclusions The mutational spectrum of cSCC is similar to that of head and neck squamous cell carcinoma and dominated by tumor suppressor genes. These results improve the foundation for understanding this disease and should aid in identifying and treating aggressive cSCC.
The survival of patients with oral squamous cell carcinoma (OSCC) has not changed significantly in several decades, leading clinicians and investigators to search for promising molecular targets. To this end, we performed comprehensive genomic analysis of gene expression, copy number, methylation and point mutations in OSCC. Integrated analysis revealed more somatic events than previously reported, identifying four major driver pathways (mitogenic signaling, Notch, cell cycle, TP53) and two additional key genes (FAT1, CASP8). The Notch pathway was defective in 66% of patients, and in follow-up studies of mechanism, functional NOTCH1 signaling inhibited proliferation of OSCC cell lines. Frequent mutation of CASP8 defines a new molecular subtype of OSCC with few copy number changes. Although genomic alterations are dominated by loss of tumor suppressor genes, 80% of patients harbored at least one genomic alteration in a targetable gene, suggesting that novel approaches to treatment may be possible for this debilitating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.