SUMMARY A critical technique for understanding how neuronal activity contributes to behavior is determining whether perturbing it changes behavior. The advent of optogenetic techniques allows the immediately reversible alteration of neuronal activity in contrast to chemical approaches lasting minutes to hours. Modification of behavior using optogenetics has had substantial success in rodents, but has not been as successful in monkeys. Here we show how optogenetic inactivation of superior colliculus neurons in awake monkeys leads to clear and repeatable behavioral deficits in the metrics of saccadic eye movements. We used our observations to evaluate principles governing the use of optogenetic techniques in the study of the neuronal bases of behavior in monkeys, particularly how experimental design must address relevant parameters, such as the application of light to subcortical structures, the spread of viral injections, and the extent of neuronal inactivation with light.
Direct and indirect pathways in the basal ganglia work together for controlling behavior. However, it is still a controversial topic whether these pathways are segregated or merged with each other. To address this issue, we studied the connections of these two pathways in the caudal parts of the basal ganglia of rhesus monkeys using anatomical tracers. Our previous studies showed that the caudal basal ganglia control saccades by conveying long-term values (stable values) of many visual objects toward the superior colliculus. In experiment 1, we injected a tracer in the caudate tail (CDt), and found local dense plexuses of axon terminals in the caudal-dorsal-lateral part of substantia nigra pars reticulata (cdlSNr) and the caudal-ventral part of globus pallidus externus (cvGPe). These anterograde projections may correspond to the direct and indirect pathways, respectively. To verify this in experiment 2, we injected different tracers into cdlSNr and cvGPe, and found many retrogradely labeled neurons in CDt and, in addition, the caudal-ventral part of the putamen (cvPut). These cdlSNr-projecting and cvGPe-projecting neurons were found intermingled in both CDt and cvPut (which we call "striatum tail"). A small but significant proportion of neurons (<15%) were double-labeled, indicating that they projected to both cdlSNr and cvGPe. These anatomical results suggest that stable value signals (good vs. bad) are sent from the striatum tail to cdlSNr and cvGPe in a biased (but not exclusive) manner. These connections may play an important role in biasing saccades toward higher valued objects and away from lower valued objects.
Damage to the monkey superior colliculus (SC) produces deficits in the generation of saccadic eye movements. Recovery of the accuracy of saccades is rapid, but saccadic latency and peak velocity recover slowly or not at all. In the present experiments we revisited the issue of recovery of function following localized lesions of the SC using three methodological advances: implantation of wire recording electrodes into the SC for the duration of the experiment to ensure that we were recording from the same site on the SC map on successive days; quantification of changes in saccadic accuracy, latency, and velocity using a standard grid of target points in the visual field contralateral to the SC lesion; measurement of movement field size to quantitatively determine any changes following the lesion. We confirmed a decrease in saccadic accuracy following electrolytic lesions of the SC, and we found that this dysmetria recovered within about 4 days. Saccadic latency increased for saccades to the lesion area and this deficit persisted. Peak saccadic velocity decreased immediately after the lesion and decreased further during the 10 days to 2 weeks of the experiment. We found no indication of an expansion of the movement fields of neurons adjacent to the lesion area. This lack of reorganization suggests that movement field changes within the SC cannot mediate the recovery in accuracy of the saccade. The persistence of the latency and velocity deficits despite the recovery of amplitude deficits indicates that saccadic latency and peak velocity are dependent upon the SC whereas saccadic amplitude is not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.