Abstract-The simplicity and low cost of capacitive interfaces makes them very attractive for wireless charging stations. Major benefits include low electromagnetic radiation and the amenability of combined power and data transfer over the same interface.We present a capacitive power transfer circuit using series resonance that enables efficient high frequency, moderate voltage operation through soft-switching. An included analysis predicts fundamental limitations on the maximum achievable efficiency for a given amount of coupling capacitance and is used to find the optimum circuit component values and operating point. Automatic tuning loops ensure the circuit operates at the optimum frequency and maximum efficiency over a wide range of coupling capacitance and load conditions.An example interface achieves near 80% efficiency at 3.7 W with only 63 pF of coupling capacitance. An automatic tuning loop adjusts the frequency from 4.2 MHz down to 4 MHz to allow for 25% variation in the nominal coupling capacitance. The duty cycle is also automatically adjusted to maintain over 70% efficiency for light loads down to 0.3 W.
A dual mass vibratory gyroscope sensor demonstrates the quadrature frequency modulated (QFM) operating mode, where the frequency of the circular orbit of a proof mass is measured to detect angular rate. In comparison to the mode-matched open loop rate mode, the QFM mode receives the same benefit of improved SNR but without the penalties of unreliable scale factor and decreased bandwidth. A matched pair of gyroscopes, integrated onto the same die, is used for temperature compensation, resulting in 6 ppb relative frequency tracking error, or an Allan deviation of 370 deg/hr with a 70 kHz resonant frequency. The integrated CMOS electronics achieve a capacitance resolution of 0.1 zF/rt-Hz with nominal 6 fF sense electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.