We present a novel length-aware solving algorithm for the quantifier-free first-order theory over regex membership predicate and linear arithmetic over string length. We implement and evaluate this algorithm and related heuristics in the Z3 theorem prover. A crucial insight that underpins our algorithm is that real-world regex and string formulas contain a wealth of information about upper and lower bounds on lengths of strings, and such information can be used very effectively to simplify operations on automata representing regular expressions. Additionally, we present a number of novel general heuristics, such as the prefix/suffix method, that can be used to make a variety of regex solving algorithms more efficient in practice. We showcase the power of our algorithm and heuristics via an extensive empirical evaluation over a large and diverse benchmark of 57256 regex-heavy instances, almost 75% of which are derived from industrial applications or contributed by other solver developers. Our solver outperforms five other state-of-the-art string solvers, namely, CVC4, OSTRICH, Z3seq, Z3str3, and Z3-Trau, over this benchmark, in particular achieving a speedup of 2.4$$\times $$ × over CVC4, 4.4$$\times $$ × over Z3seq, 6.4$$\times $$ × over Z3-Trau, 9.1$$\times $$ × over Z3str3, and 13$$\times $$ × over OSTRICH.
We present Woorpje, a string solver for bounded word equations (i.e., equations where the length of each variable is upper bounded by a given integer). Our algorithm works by reformulating the satisfiability of bounded word equations as a reachability problem for nondeterministic finite automata, and then carefully encoding this as a propositional satisfiability problem, which we then solve using the well-known Glucose SAT-solver. This approach has the advantage of allowing for the natural inclusion of additional linear length constraints. Our solver obtains reliable and competitive results and, remarkably, discovered several cases where state-of-the-art solvers exhibit a faulty behaviour.
We present a transformation-system-based technique in the framework of string solving, by reformulating a classical combinatorics on words result, the Lemma of Levi. We further enrich the induced rules by simplification steps based on results from the combinatorial theory of word equations, as well as by the addition of linear length constraints. This transformation-system approach cannot solve all equations efficiently by itself. To improve the efficiency of our transformation-system approach we integrate existing successful string solvers, which are called based on several heuristics. The experimental evaluation we performed shows that integrating our technique as an inprocessing step improves in general the performance of existing solvers.
Widespread use of string solvers in formal analysis of stringheavy programs has led to a growing demand for more efficient and reliable techniques which can be applied in this context, especially for real-world cases. Designing an algorithm for the (generally undecidable) satisfiability problem for systems of string constraints requires a thorough understanding of the structure of constraints present in the targeted cases. In this paper, we investigate benchmarks presented in the literature containing regular expression membership predicates, extract different first order logic theories, and prove their decidability, resp. undecidability. Notably, the most common theories in real-world benchmarks are PSPACEcomplete and directly lead to the implementation of a more efficient algorithm to solving string constraints.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.