Small-molecule ligands that control the spatial location of proteins in living cells would be valuable tools for regulating biological systems. However, the creation of such molecules remains almost unexplored because of the lack of a design methodology. Here we introduce a conceptually new type of synthetic ligands, self-localizing ligands (SLLs), which spontaneously localize to specific subcellular regions in mammalian cells. We show that SLLs bind their target proteins and relocate (tether) them rapidly from the cytoplasm to their targeting sites, thus serving as synthetic protein translocators. SLL-induced protein translocation enables us to manipulate diverse synthetic/endogenous signaling pathways. The method is also applicable to reversible protein translocation and allows control of multiple proteins at different times and locations in the same cell. These results demonstrate the usefulness of SLLs in the spatial (and temporal) control of intracellular protein distribution and biological processes, opening a new direction in the design of small-molecule tools or drugs for cell regulation.
We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.
The prediction of the conversion of healthy individuals and those with mild cognitive impairment to the status of active Alzheimer’s disease is a challenging task. Recently, a survival analysis based upon deep learning was developed to enable predictions regarding the timing of an event in a dataset containing censored data. Here, we investigated whether a deep survival analysis could similarly predict the conversion to Alzheimer’s disease. We selected individuals with mild cognitive impairment and cognitively normal subjects and used the grey matter volumes of brain regions in these subjects as predictive features. We then compared the prediction performances of the traditional standard Cox proportional-hazard model, the DeepHit model and our deep survival model based on a Weibull distribution. Our model achieved a maximum concordance index of 0.835, which was higher than that yielded by the Cox model and comparable to that of the DeepHit model. To our best knowledge, this is the first report to describe the application of a deep survival model to brain magnetic resonance imaging data. Our results demonstrate that this type of analysis could successfully predict the time of an individual’s conversion to Alzheimer’s disease.
Background: With the growing momentum for the adoption of machine learning (ML) in medical field, it is likely that reliance on ML for imaging will become routine over the next few years. We have developed a software named BAAD, which uses ML algorithms for the diagnosis of Alzheimer's disease (AD) and prediction of mild cognitive impairment (MCI) progression.Methods: We constructed an algorithm by combining a support vector machine (SVM) to classify and a voxel-based morphometry (VBM) to reduce concerned variables. We grouped progressive MCI and AD as an AD spectrum and trained SVM according to this classification. We randomly selected half from the total 1,314 subjects of AD neuroimaging Initiative (ADNI) from North America for SVM training, and the remaining half were used for validation to fine-tune the model hyperparameters. We created two types of SVMs, one based solely on the brain structure (SVMst), and the other based on both the brain structure and Mini-Mental State Examination score (SVMcog). We compared the model performance with two expert neuroradiologists, and further evaluated it in test datasets involving 519, 592, 69, and 128 subjects from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL), Japanese ADNI, the Minimal Interval Resonance Imaging in AD (MIDIAD) and the Open Access Series of Imaging Studies (OASIS), respectively.Results: BAAD's SVMs outperformed radiologists for AD diagnosis in a structural magnetic resonance imaging review. The accuracy of the two radiologists was 57.5 and 70.0%, respectively, whereas, that of the SVMst was 90.5%. The diagnostic accuracy of the SVMst and SVMcog in the test datasets ranged from 88.0 to 97.1% and 92.5 to 100%, respectively. The prediction accuracy for MCI progression was 83.0% in SVMst and 85.0% in SVMcog. In the AD spectrum classified by SVMst, 87.1% of the subjects were Aβ positive according to an AV-45 positron emission tomography. Similarly, among MCI patients classified for the AD spectrum, 89.5% of the subjects progressed to AD.Conclusion: Our ML has shown high performance in AD diagnosis and prediction of MCI progression. It outperformed expert radiologists, and is expected to provide support in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.