An extremely low-frequency magnetic field (ELF-MF) is generated by power lines and household electrical devices. Many studies have suggested an association between chronic ELF-MF exposure and anxiety and/or depression. The mechanism of these effects is assumed to be a stress response induced by ELF-MF exposure. However, this mechanism remains controversial. In the present study, we investigated whether chronic ELF-MF exposure (intensity, 1.5 mT; [corrected] total exposure, 200 h) affected emotional behavior and corticosterone synthesis in mice. ELF-MF-treated mice showed a significant increase in total immobility time in a forced swim test and showed latency to enter the light box in a light-dark transition test, compared with sham-treated (control) mice. Corticosterone secretion was significantly high in the ELF-MF-exposed mice; however, no changes were observed in the amount of the adrenocorticotropic hormone and the expression of genes related to stress response. Quantification of the mRNA levels of adrenal corticosteroid synthesis enzymes revealed a significant reduction in Cyp17a1 mRNA in the ELF-MF-exposed mice. Our findings suggest the possibility that high intensity and chronic exposure to ELF-MF induces an increase in corticosterone secretion, along with depression- and/or anxiety-like behavior, without enhancement of the hypothalamic-pituitary-adrenal axis.
This study was made to explain the mechanisms for the effects of exposure to a time varying 1.51 T magnetic field on the intracellular Ca(2+) signaling pathway. The exposure inhibited an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in bovine chromaffin cells induced by addition of bradykinin (BK) to a Ca(2+) free medium. The exposure did not change BK induced production of inositol 1,4,5-trisphosphate (IP(3)). [Ca(2+)](i) was markedly increased in IP(3) loaded cells, and this increase was inhibited by the magnetic field exposure. A similar increase in [Ca(2+)](i) by other drugs, which stimulated Ca(2+) release from intracellular Ca(2+) stores, was again inhibited by the same exposure. However, transmembrane Ca(2+) fluxes caused in the presence of thapsigargin were not inhibited by the magnetic field exposure in a Ca(2+) containing medium. Inhibition of the BK induced increase in [Ca(2+)](i) by the exposure for 30 min was mostly recovered 1 h after exposure ended. Our results reveal that the magnetic field exposure inhibits Ca(2+) release from intracellular Ca(2+) stores, but that BK bindings to BK receptors of the cell membrane and intracellular inositol IP(3) production are not influenced.
Extremely low-frequency magnetic fields (ELF-MFs) are generated by power lines and household electrical devices. In the last several decades, some evidence has shown an association between ELF-MF exposure and depression and/or anxiety in epidemiological and animal studies. The mechanism underlying ELF-MF-induced depression is considered to involve adrenal steroidogenesis, which is triggered by ELF-MF exposure. However, how ELF-MFs stimulate adrenal steroidogenesis is controversial. In the current study, we investigated the effect of ELF-MF exposure on the mouse adrenal cortex-derived Y-1 cell line and the human adrenal cortex-derived H295R cell line to clarify whether the ELF-MF stimulates adrenal steroidogenesis directly. ELF-MF exposure was found to significantly stimulate adrenal steroidogenesis (p < 0.01–0.05) and the expression of adrenal steroid synthetic enzymes (p < 0.05) in Y-1 cells, but the effect was weak in H295R cells. Y-1 cells exposed to an ELF-MF showed significant decreases in phosphodiesterase activity (p < 0.05) and intracellular Ca2+ concentration (p < 0.01) and significant increases in intracellular cyclic adenosine monophosphate (cAMP) concentration (p < 0.001–0.05) and cAMP response element-binding protein phosphorylation (p < 0.05). The increase in cAMP was not inhibited by treatment with NF449, an inhibitor of the Gs alpha subunit of G protein. Our results suggest that ELF-MF exposure stimulates adrenal steroidogenesis via an increase in intracellular cAMP caused by the inhibition of phosphodiesterase activity in Y-1 cells. The same mechanism may trigger the increase in adrenal steroid secretion in mice observed in our previous study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.