The immediately-early response gene 5 (IER5) has been reported to be induced by γ-ray irradiation and to play a role in the induction of cell death caused by radiation. We previously identified IER5 as one of the 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide (TMPP)-induced transcriptional responses in AML cells, using microarrays that encompassed the entire human genome. However, the biochemical pathway and mechanisms of IER5 function in regulation of the cell cycle remain unclear. In this study, we investigated the involvement of IER5 in the cell cycle and in cell proliferation of acute myeloid leukemia (AML) cells. We found that the over-expression of IER5 in AML cell lines and in AML-derived ALDHhi (High Aldehyde Dehydrogenase activity)/CD34+ cells inhibited their proliferation compared to control cells, through induction of G2/M cell cycle arrest and a decrease in Cdc25B expression. Moreover, the over-expression of IER5 reduced colony formation of AML-derived ALDHhi/CD34+ cells due to a decrease in Cdc25B expression. In addition, over-expression of Cdc25B restored TMPP inhibitory effects on colony formation in IER5-suppressed AML-derived ALDHhi/CD34+ cells. Furthermore, the IER5 reduced Cdc25B mRNA expression through direct binding to Cdc25B promoter and mediated its transcriptional attenuation through NF-YB and p300 transcriptinal factors. In summary, we found that transcriptional repression mediated by IER5 regulates Cdc25B expression levels via the release of NF-YB and p300 in AML-derived ALDHhi/CD34+ cells, resulting in inhibition of AML progenitor cell proliferation through modulation of cell cycle. Thus, the induction of IER5 expression represents an attractive target for AML therapy.
A recently developed method enabled us to simultaneously characterize and quantitate glycosidically bound volatiles (GBVs) at picomole levels using liquid chromatography-mass spectrometry (LC-MS). On the basis of the analytical data it is possible to screen tea varieties most suitable for black tea processing, in which higher concentrations of primeverosides accumulate. The primeverosides decreased at the rolling step in black tea processing, whereas the glucopyranosides did not change much. The total contents of GBVs gradually increased at the withering steps and then remarkably increased after the fixing step at 230 °C, during oolong tea processing. The presence of 6'-O-malonyl ester type β-D-glucopyranosides in the tea samples suggested a contribution to the increment in glucopyranosides during oolong tea processing. The method was also used to analyze GBVs and their derivatives to understand their possible role in the metabolic pathway of tea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.