Intranasal lidocaine 8% administered by a metered-dose spray produced prompt but temporary analgesia without serious adverse reactions in patients with second-division trigeminal neuralgia.
Fucoxanthin, a xanthophyll present in brown algae consumed in Eastern Asia, can suppress carcinogenesis and obesity in rodents. We investigated the metabolism, tissue distribution, and depletion of fucoxanthin in ICR mice by comparison with those of lutein. The experiments comprised 14-d dietary supplementation with lutein esters or fucoxanthin, followed by 41- or 28-d, respectively, depletion periods with carotenoid-free diets. After lutein ester supplementation, 3'-hydroxy-ε,ε-caroten-3-one and lutein were the predominant carotenoids in plasma and tissues, accompanied by ε,ε-carotene-3,3'-dione. The presence of these keto-carotenoids in mouse tissues is reported here for the first time, to our knowledge. Lutein and its metabolites accumulated most in the liver (7.51 μmol/kg), followed by plasma (2.11 μmol/L), adipose tissues (1.01-1.44 μmol/kg), and kidney (0.87 μmol/kg). The half-life of the depletion (t(1/2)) of lutein metabolites varied as follows: plasma (1.16 d) < liver (2.63 d) < kidney (4.44 d) < < < adipose tissues (>41 d). Fucoxanthinol and amarouciaxanthin A were the main metabolites in mice fed fucoxanthin and partitioned more into adipose tissues (3.13-3.64 μmol/kg) than into plasma, liver, and kidney (1.29-1.80 μmol/kg). Fucoxanthin metabolites had shorter t(1/2) in plasma, liver, and kidneys (0.92-1.23 d) compared with those of adipose tissues (2.76-4.81 d). The tissue distribution of lutein and fucoxanthin metabolites was not associated with their lipophilicity, but depletion seemed to be slower for more lipophilic compounds. We concluded that mice actively convert lutein and fucoxanthin to keto-carotenoids by oxidizing the secondary hydroxyl groups and accumulate them in tissues.
These results suggest that 4 weeks of theophylline treatment attenuates neutrophil-associated inflammation in the airways of mild to moderate COPD patients. However, the clinical benefits remain to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.