Construction of a novel protein-detection system was carried out using a designed peptide library with fluorescent labels based on loop structures. As a basic model study, detection of alpha-amylase using fluorescent-labeled peptides derived from an active loop of tendamistat was examined. The detection methods for proteins with immobilized peptides as well as peptides in solution have been successfully established. Based on these results, a loop peptide library that has various turn sequences grafted on a stable loop structure has been constructed. Various proteins with recognition patterns corresponding, for instance, to "protein fingerprints" could be detected using an immobilized peptide library. The present results suggest that the system can be applied to the development of a peptide microarray that behaves as a protein chip.
A practical high-throughput protein detection system is described, based on synthetic peptide arrays consisting of designed alpha-helical peptides, detected by fluorescence resonance energy transfer (FRET). Initially a model alpha-helical peptide known to interact with a structured protein, calmodulin, was selected to establish the strategy for high-throughput detection. In comparison to peptides with a single probe, a much higher FRET response has been observed with two fluorescent probes (7-diethylaminocoumarin-3-carboxylic acid and 5(6)-carboxy-fluorescein) at both termini of the synthetic peptides. To establish a reproducible high-throughput detection system, peptides were also immobilized onto a solid surface for detection of the target proteins. A small library of 112 different peptides was constructed, based on a model of the alpha-helical peptide with systematic replacement of residues carrying specific charges and/or hydrophobicities. The library was used to effectively characterize various proteins, giving their own 'protein fingerprint' patterns. The resulting 'protein fingerprints' correlate with the recognition properties of the proteins. The present microarray with designed synthetic peptides as the capturing agents is promising for the development of protein detection chips.
Searching for space-time variations of the constants of Nature is a promising way to search for new physics beyond General Relativity and the standard model motivated by unification theories and models of dark matter and dark energy. We propose a new way to search for a variation of the fine-structure constant using measurements of late-type evolved giant stars from the S-star cluster orbiting the supermassive black hole in our Galactic Center. A measurement of the difference between distinct absorption lines (with different sensitivity to the fine structure constant) from a star leads to a direct estimate of a variation of the fine structure constant between the star's location and Earth. Using spectroscopic measurements of 5 stars, we obtain a constraint on the relative variation of the fine structure constant below 10 −5 . This is the first time a varying constant of Nature is searched for around a black hole and in a high gravitational potential. This analysis shows new ways the monitoring of stars in the Galactic Center can be used to probe fundamental physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.