We report a waveform-selective metasurface that operates at 2.4 GHz band, i.e. one of ISM (Industrial, Scientific and Medical) bands. This structure gives us an additional degree of freedom to control electromagnetic waves and absorbs a particular waveform or pulse width of an incident wave at the same frequency band, while transmitting others. This unique capability is demonstrated using either ideal sinusoidal waves or Wi-Fi signals as a more practical waveform in wireless communications. Especially, this study shows how the waveform-selective metasurface interacts with realistic wireless communication signals from the viewpoint of communication characteristics, such as EVM (Error Vector Magnitude), BER (Bit Error Rate) and phase error. Thus, our study paves the way for extending the concept of waveform selectivity from a fundamental electromagnetic research field to a more realistic wireless communication field to, for instance, mitigate electromagnetic interference occurring at the same frequency band without significantly degrading communication characteristics.
In this study, we numerically demonstrate how the response of recently reported circuit-based metasurfaces is characterized by their circuit parameters. These metasurfaces, which include a set of four diodes as a full wave rectifier, are capable of sensing different waves even at the same frequency in response to the incident waveform, or more specifically the pulse width. This study reveals the relationship between the electromagnetic response of such waveform-selective metasurfaces and the SPICE parameters of the diodes used. First, we show that reducing a parasitic capacitive component of the diodes is important for realization of waveform-selective metasurfaces in a higher frequency regime. Second, we report that the operating power level is closely related to the saturation current and the breakdown voltage of the diodes. Moreover, the operating power range is found to be broadened by introducing an additional resistor into the inside of the diode bridge. Our study is expected to provide design guidelines for circuit-based waveform-selective metasurfaces to select/fabricate optimal diodes and enhance the waveform-selective performance at the target frequency and power level.
We numerically demonstrate a new type of waveform-selective metasurface that senses the difference in incoming waveforms or pulse widths at the same frequency. Importantly, the proposed structure contains precise rectifier circuits that, compared to ordinary schottky diodes used within old types of structures, rectify induced electric charges at a markedly reduced input power level depending on several design parameters but mostly on the gain of operational amplifiers. As a result, a waveform-selective absorbing mechanism related to this turn-on voltage appears even with a limited signal strength that is comparable to realistic wireless signal levels. In addition, the proposed structure exhibits a noticeably wide dynamic range from $${-}$$
-
30 to 6 dBm, compared to a conventional structure that operated only around 0 dBm. Thus, our study opens up the door to apply the concept of waveform selectivity to a more practical field of wireless communications to control different small signals at the same frequency.
In this study, we numerically demonstrate how the response of recently reported circuit-based metasurfaces is characterized by their circuit parameters. These metasurfaces, which include a set of four diodes as a full wave rectifier, are capable of sensing different waves even at the same frequency in response to the incident waveform, or more specifically the pulse width. This study reveals the relationship between the electromagnetic response of such waveform-selective metasurfaces and the SPICE parameters of the diodes used. In particular, we draw conclusions about how the SPICE parameters are related to (1) the high-frequency operation, (2) input power requirement and (3) dynamic range of waveform-selective metasurfaces with supporting simulation results. First, we show that reducing a parasitic capacitive component of the diodes is important for realization of the waveform-selective metasurfaces in a higher frequency regime. Second, we report that the operating power level is closely related to the saturation current and the breakdown voltage of the diodes. Moreover, the operating power range is found to be broadened by introducing an additional resistor into the inside of the diode bridge. Our study is expected to provide design guidelines for circuit-based waveform-selective metasurfaces to select/fabricate optimal diodes and enhance the waveform-selective performance at the target frequency and power level. Our results are usefully exploited to ensure the selectivity based on the pulse duration of the incident wave in a range of potential applications including electromagnetic interference, wireless power transfer, antenna design, wireless communications, and sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.