This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs)
regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p
(miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the
Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or
MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of
SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte
complexes (COCs). Moreover, the cumulus cells but not the MGCs in
Bmp15–/–/Gdf9+/– (double-mutant) mice
exhibited higher miR-322 expression than those of wild-type mice. Taken together,
these results show that ODPFs suppress the expression of miR-322 in cumulus cells.
Gene ontology analysis of putative miR-322 targets whose expression was detected in
MGCs with RNA-sequencing suggested that multiple biological processes are affected by
miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in
granulosa cells and that this regulation may participate in the differential control
of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of
cumulus cells takes place at both transcriptional and post-transcriptional
levels.
High plantar flexor moment during the stance phase is known to cause high plantar pressure under the forefoot; however, the effects on plantar pressure due to a change of gastrocnemius medialis (GM) activity during gait, have not been investigated to date. Reciprocal inhibition is one of the effects of electrical stimulation (ES), and is the automatic antagonist alpha motor neuron inhibition which is evoked by excitation of the agonist muscle. The aim of this study was to investigate the influences of ES of the tibialis anterior (TA) on plantar pressure and the GM activity during gait in healthy adults. ES was applied to the TAs of twenty healthy male adults for 30 minutes at the level of intensity that causes a full range of dorsiflexion in the ankle (frequency; 50 Hz, on-time; 10 sec, off-time; 10 sec). Subjects walked 10 meters before and after ES, and we measured the peak plantar pressure (PP), pressure time integral (PTI), and gait parameters by using an F-scan system. The percentage of integrated electromyogram (%IEMG), active time, onset time, peak time, and cessation time of TA and GM were calculated. PP and PTI under the forefoot, rear foot, and total plantar surface significantly decreased after the application of ES. Meanwhile, changes of gait parameters were not observed. %IEMG and the active time of both muscles did not change; however, onset time and peak time of GM became significantly delayed. ES application to the TA delayed the timing of onset and peak in the GM, and caused the decrease of plantar pressure during gait. The present results suggest that ES to the TA could become a new method for the control of plantar pressure via modulation of GM activity during gait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.