Layered two-dimensional materials have shown novel optoelectronic properties and are well suited to be integrated in planar photonic circuits [1][2][3] . For example, graphene has been utilized for wideband photodetection [4][5][6][7] . Because graphene lacks a band gap, however, graphene photodetectors suffer from very high dark current 6,8 . In contrast, layered black phosphorous, the latest addition to the family of 2D materials [9][10][11] , is well-suited for photodetector applications due to its narrow but finite band gap [12][13][14][15][16][17] . Here, we demonstrate a gated multilayer black phosphorus photodetector integrated on a silicon photonic waveguide operating in the near-infrared telecom band. In a significant advantage over graphene devices, black phosphorus photodetectors can operate under a bias with very low dark current and attain intrinsic responsivity up to 135 mA/W and 657 mA/W in 11.5nm and 100 nm thick devices, respectively, at room temperature. The photocurrent is dominated by the photovoltaic effect with a high response bandwidth exceeding 3 GHz. Two-dimensional (2D) materials have tremendous potential for optoelectronic applications [1][2][3] . Graphene, the most extensively investigated 2D material, has many novel optical properties such as a tunable inter-band transition and saturable absorption, and has potential for a wide range of optoelectronic applications 1,2 . However, one important optoelectronic device application where graphene is severely limited in is photodetection. Although graphene has shown broadband optical absorption, ultrafast photoresponse and reasonable responsivity, graphene photodetectors have very high dark current when they are operated in photoconductive mode
Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies (VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise-limited displacement sensitivity of 39 fm Hz(-1/2). Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10(-18) g).
The force exerted by photons is of fundamental importance in light-matter interactions. For example, in free space, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles. This optical force is expected to be greatly enhanced in integrated photonic circuits in which light is highly concentrated at the nanoscale. Harnessing the optical force on a semiconductor chip will allow solid state devices, such as electromechanical systems, to operate under new physical principles. Indeed, recent experiments have elucidated the radiation forces of light in high-finesse optical microcavities, but the large footprint of these devices ultimately prevents scaling down to nanoscale dimensions. Recent theoretical work has predicted that a transverse optical force can be generated and used directly for electromechanical actuation without the need for a high-finesse cavity. However, on-chip exploitation of this force has been a significant challenge, primarily owing to the lack of efficient nanoscale mechanical transducers in the photonics domain. Here we report the direct detection and exploitation of transverse optical forces in an integrated silicon photonic circuit through an embedded nanomechanical resonator. The nanomechanical device, a free-standing waveguide, is driven by the optical force and read out through evanescent coupling of the guided light to the dielectric substrate. This new optical force enables all-optical operation of nanomechanical systems on a CMOS (complementary metal-oxide-semiconductor)-compatible platform, with substantial bandwidth and design flexibility compared to conventional electrical-based schemes.
Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics.
The optical binding forces between guided lightwaves in dielectric waveguides can be either repulsive or attractive. So far only attractive force has been observed. Here we experimentally demonstrate a bipolar optical force between coupled nanomechanical waveguides. Both attractive and repulsive optical forces are obtained. The sign of the force can be switched reversibly by tuning the relative phase of the interacting lightwaves. This tunable, bipolar interaction forms the foundation for the operation of a new class of light force devices and circuits.Comment: 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.