Prostate cancer is the most common type of cancer in men and ranks second only to lung cancer in cancer-related deaths. The management of locally advanced prostate cancer is difficult because the cancer often becomes hormone insensitive and unresponsive to current chemotherapeutic agents. Knowledge about the regulatory molecules involved in the transformation to androgen-independent prostate cancer is essential for the rational design of agents to prevent and treat prostate cancer. Protein kinase CE (PKCE), a member of the novel PKC subfamily, is linked to the development of androgen-independent prostate cancer. PKCE expression levels, as determined by immunohistochemistry of human prostate cancer tissue microarrays, correlated with the aggressiveness of prostate cancer. The mechanism by which PKCE mediates progression to prostate cancer remains elusive. We present here for the first time that signal transducers and activators of transcription 3 (Stat3), which is constitutively activated in a wide variety of human cancers, including prostate cancer, interacts with PKCE. The interaction of PKCE with Stat3 was observed in human prostate cancer, human prostate cancer cell lines (LNCaP, DU145, PC3, and CW22rv1), and prostate cancer that developed in transgenic adenocarcinoma of mouse prostate mice. In reciprocal immunoprecipitation/blotting experiments, prostatic Stat3 coimmunoprecipitated with PKCE. Localization of PKCE with Stat3 was confirmed by double immunofluorescence staining. The interaction of PKCE with Stat3 was PKCE isoform specific. Inhibition of PKCE protein expression in DU145 cells using specific PKCE small interfering RNA (a) inhibited Stat3Ser727 phosphorylation, (b) decreased both Stat3 DNAbinding and transcriptional activity, and (c) decreased DU145 cell invasion. These results indicate that PKCE activation is essential for constitutive activation of Stat3 and prostate cancer progression. [Cancer Res 2007;67(18):8828-38]
Prostate cancer (PCa) is the second leading cause of cancerrelated deaths in men. Hormone-refractory invasive PCa is the end stage and accounts for the majority of PCa patient deaths. We present here that plumbagin (PL), a quinoid constituent isolated from the root of the medicinal plant Plumbago zeylanica L., may be a potential novel agent in the control of hormone-refractory PCa. Specific observations are the findings that PL inhibited PCa cell invasion and selectively induced apoptosis in PCa cells but not in immortalized nontumorigenic prostate epithelial RWPE-1 cells. In addition, i.p. administration of PL (2 mg/kg body weight), beginning 3 days after ectopic implantation of hormone-refractory DU145 PCa cells, delayed tumor growth by 3 weeks and reduced both tumor weight and volume by 90%. Discontinuation of PL treatment in PL-treated mice for as long as 4 weeks did not result in progression of tumor growth. PL, at concentrations as low as 5 Mmol/L, inhibited in both cultured PCa cells and DU145 xenografts (a) the expression of protein kinase CE (PKCE), phosphatidylinositol 3-kinase, phosphorylated AKT, phosphorylated Janus-activated kinase-2, and phosphorylated signal transducer and activator of transcription 3 (Stat3); (b) the DNA-binding activity of transcription factors activator protein-1, nuclear factor-KB, and Stat3; and (c) Bcl-xL, cdc25A, and cyclooxygenase-2 expression. The results indicate for the first time, using both in vitro and in vivo preclinical models, that PL inhibits the growth and invasion of PCa. PL inhibits multiple molecular targets including PKCE, a predictive biomarker of PCa aggressiveness. PL may be a novel agent for therapy of hormone-refractory PCa. [Cancer Res 2008;68(21):9024-32]
According to the World Cancer Report, skin cancer constitutes approximately 30% of all newly diagnosed cancers in the world, and solar ultraviolet (UV) radiation (particularly, its UVB component; 290-320 nm) is an established cause of approximately 90% of skin cancers. The available options have proven to be inadequate for the management of skin cancers. Therefore, there is an urgent need to develop mechanism-based novel approaches for prevention/therapy of skin cancer. In this study, we evaluated the chemopreventive effects of resveratrol against UVB radiation-mediated skin tumorigenesis in the SKH-1 hairless mouse model. For our studies, we used a UVB initiation-promotion protocol in which the control mice were subjected to chronic UVB exposure (180 mJ/cm2, twice weekly, for 28 weeks). The experimental animals received either a pretreatment (30 min before each UVB) or post-treatment (5 min after UVB) of resveratrol (25 or 50 micro mole/0.2 ml acetone/mouse). The mice were followed for skin tumorigenesis and were killed at 24 h after the last UVB exposure, for further studies. The topical application of skin with resveratrol (both pre- and post- treatment) resulted in a highly significant 1) inhibition in tumor incidence, and 2) delay in the onset of tumorigenesis. Interestingly, the post-treatment of resveratrol was found to impart equal protection than the pretreatment; suggesting that resveratrol-mediated responses may not be sunscreen effects. Because Survivin is a critical regulator of survival/death of cells, and its overexpression has been implicated in several cancers, we evaluated its involvement in chemoprevention of UVB-mediated skin carcinogenesis by resveratrol. Our data demonstrated a significant 1) up-regulation of Survivin (both at protein- and mRNA- levels), 2) up-regulation of phospho-Survivin protein, and 3) down-regulation of proapoptotic Smac/DIABLO protein in skin tumors; whereas treatment with resveratrol resulted in the attenuation of these responses. Our study also suggests that resveratrol enhanced apoptosis in UVB-exposure-mediated skin tumors. Our study, for the first time, demonstrated that 1) resveratrol imparts strong chemopreventive effects against UVB exposure-mediated skin carcinogenesis (relevant to human skin cancers), and 2) the chemopreventive effects of resveratrol may, at least in part, be mediated via modulations in Survivin and other associated events. On the basis of our work, it is conceivable to design resveratrol-containing emollient or patch, as well as sunscreen and skin-care products for prevention of skin cancer and other conditions, which are believed to be caused by UV radiation.
Prostate cancer is a major health problem in the U.S. and the available treatment and surgical options have proven to be inadequate in controlling the mortality and morbidity associated with this disease. It is therefore necessary to intensify our efforts to better understand this disease and develop novel approaches for its prevention and treatment. This study was conducted to evaluate the chemopreventive/antiproliferative potential of resveratrol (trans-3,4 ¶,5,-trihydroxystilbene) against prostate cancer and its mechanism of action. Treatment with resveratrol (0 -50 Mmol/L for 24 hours) resulted in a significant (a) decrease in cell viability, (b) decrease of clonogenic cell survival, (c) inhibition of androgen (R1881)-stimulated growth, and (d) induction of apoptosis in androgenresponsive human prostate carcinoma (LNCaP) cells. Interestingly, at similar concentrations, resveratrol treatment did not affect the viability or rate of apoptosis in normal human prostate epithelial cells. Furthermore, our data showed that resveratrol-treatment resulted in significant dose-dependent inhibition in the constitutive expression of phosphatidylinositol 3 ¶-kinase and phosphorylated (active) Akt in LNCaP cells. Resveratrol treatment for LNCaP cells was also found to result in a significant (a) loss of mitochondrial membrane potential, (b) inhibition in the protein level of antiapoptotic Bcl-2, and (c) increase in proapoptotic members of the Bcl-2 family, i.e., Bax, Bak, Bid, and Bad. Taken together, our data suggested that resveratrol causes an inhibition of phosphatidylinositol 3 ¶-kinase/Akt activation that, in turn, results in modulations in Bcl-2 family proteins in such a way that the apoptosis of LNCaP cells is promoted. Based on these studies, we suggest that resveratrol could be developed as an agent for the management of prostate cancer. [Mol Cancer Ther 2006;5(5):1335 -41]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.