As new drugs are developed, it is essential to appropriately translate the drug dosage from one animal species to another. A misunderstanding appears to exist regarding the appropriate method for allometric dose translations, especially when starting new animal or clinical studies. The need for education regarding appropriate translation is evident from the media response regarding some recent studies where authors have shown that resveratrol, a compound found in grapes and red wine, improves the health and life span of mice. Immediately after the online publication of these papers, the scientific community and popular press voiced concerns regarding the relevance of the dose of resveratrol used by the authors. The animal dose should not be extrapolated to a human equivalent dose (HED) by a simple conversion based on body weight, as was reported. For the more appropriate conversion of drug doses from animal studies to human studies, we suggest using the body surface area (BSA) normalization method. BSA correlates well across several mammalian species with several parameters of biology, including oxygen utilization, caloric expenditure, basal metabolism, blood volume, circulating plasma proteins, and renal function. We advocate the use of BSA as a factor when converting a dose for translation from animals to humans, especially for phase I and phase II clinical trials.
The MAGE-A, MAGE-B, and MAGE-C protein families comprise the class-I MAGE/cancer testes antigens, a group of highly homologous proteins whose expression is suppressed in all normal tissues except developing sperm. Aberrant expression of class I MAGE proteins occurs in melanomas and many other malignancies, and MAGE proteins have long been recognized as tumor-specific targets; however, their functions have largely been unknown. Here, we show that suppression of class I MAGE proteins induces apoptosis in the Hs-294T, A375, and S91 MAGE-positive melanoma cell lines and that members of all three families of MAGE class I proteins form complexes with KAP1, a scaffolding protein that is known as a corepressor of p53 expression and function. In addition to inducing apoptosis, MAGE suppression decreases KAP1 complexing with p53, increases immunoreactive and acetylated p53, and activates a p53 responsive reporter gene. Suppression of class I MAGE proteins also induces apoptosis in MAGE-Apositive, p53wt/wt parental HCT 116 colon cancer cells but not in a MAGE-A-positive HCT 116 p53 À/À variant, indicating that MAGE suppression of apoptosis requires p53. Finally, treatment with MAGE-specific small interfering RNA suppresses S91 melanoma growth in vivo, in syngenic DBA2 mice. Thus, class I MAGE protein expression may suppress apoptosis by suppressing p53 and may actively contribute to the development of malignancies and by promoting tumor survival. Because the expression of class I MAGE proteins is limited in normal tissues, inhibition of MAGE antigen expression or function represents a novel and specific treatment for melanoma and diverse malignancies. [Cancer Res 2007;67(20):9954-62]
According to the World Cancer Report, skin cancer constitutes approximately 30% of all newly diagnosed cancers in the world, and solar ultraviolet (UV) radiation (particularly, its UVB component; 290-320 nm) is an established cause of approximately 90% of skin cancers. The available options have proven to be inadequate for the management of skin cancers. Therefore, there is an urgent need to develop mechanism-based novel approaches for prevention/therapy of skin cancer. In this study, we evaluated the chemopreventive effects of resveratrol against UVB radiation-mediated skin tumorigenesis in the SKH-1 hairless mouse model. For our studies, we used a UVB initiation-promotion protocol in which the control mice were subjected to chronic UVB exposure (180 mJ/cm2, twice weekly, for 28 weeks). The experimental animals received either a pretreatment (30 min before each UVB) or post-treatment (5 min after UVB) of resveratrol (25 or 50 micro mole/0.2 ml acetone/mouse). The mice were followed for skin tumorigenesis and were killed at 24 h after the last UVB exposure, for further studies. The topical application of skin with resveratrol (both pre- and post- treatment) resulted in a highly significant 1) inhibition in tumor incidence, and 2) delay in the onset of tumorigenesis. Interestingly, the post-treatment of resveratrol was found to impart equal protection than the pretreatment; suggesting that resveratrol-mediated responses may not be sunscreen effects. Because Survivin is a critical regulator of survival/death of cells, and its overexpression has been implicated in several cancers, we evaluated its involvement in chemoprevention of UVB-mediated skin carcinogenesis by resveratrol. Our data demonstrated a significant 1) up-regulation of Survivin (both at protein- and mRNA- levels), 2) up-regulation of phospho-Survivin protein, and 3) down-regulation of proapoptotic Smac/DIABLO protein in skin tumors; whereas treatment with resveratrol resulted in the attenuation of these responses. Our study also suggests that resveratrol enhanced apoptosis in UVB-exposure-mediated skin tumors. Our study, for the first time, demonstrated that 1) resveratrol imparts strong chemopreventive effects against UVB exposure-mediated skin carcinogenesis (relevant to human skin cancers), and 2) the chemopreventive effects of resveratrol may, at least in part, be mediated via modulations in Survivin and other associated events. On the basis of our work, it is conceivable to design resveratrol-containing emollient or patch, as well as sunscreen and skin-care products for prevention of skin cancer and other conditions, which are believed to be caused by UV radiation.
We previously showed that the calcium-binding protein S100A4 is overexpressed during the progression of prostate cancer (CaP) in humans and in the TRAMP (transgenic adenocarcinoma of the mouse prostate) mouse model. We tested a hypothesis that the S100A4 gene plays a role in the invasiveness of human CaP and may be associated with its metastatic spread. We observed that siRNAmediated suppression of the S100A4 gene significantly reduced the proliferative and invasive capability of the highly invasive CaP cells PC-3. We evaluated the mechanism through which the S100A4 gene controls invasiveness of cells by using a macroarray containing 96 well characterized metastatic genes. We found that matrix metalloproteinase 9 (MMP-9) and its tissue inhibitor (TIMP-1) were highly responsive to S100A4 gene suppression. Furthermore, S100A4 suppression significantly reduced the expression and proteolytic activity of MMP-9. By employing an MMP-9-promoter reporter, we observed a significant reduction in the transcriptional activation of the MMP-9 gene in S100A4-siRNA-transfected cells. Cells overexpressing the S100A4 gene (when transfected with pcDNA3.1-S100A4 plasmid) also significantly expressed MMP-9 and TIMP-1 genes with increased proteolytic activity of MMP-9 concomitant to increased transcriptional activation of the MMP-9 gene. S100A4-siRNA-transfected cells exhibited a reduced rate of tumor growth under in vivo conditions. Our data demonstrate that the S100A4 gene controls the invasive potential of human CaP cells through regulation of MMP-9 and that this association may contribute to metastasis of CaP cells. We suggest that S100A4 could be used as a biomarker for CaP progression and a novel therapeutic or chemopreventive target for human CaP treatment. extracellular matrix ͉ metastasis ͉ biomarker A pproximately 27,350 prostate cancer (CaP)-related deaths are predicted during this year alone in the United States, and despite recent improvements in diagnostic and therapeutic techniques, the survival rate of CaP patients is poor because of the posttreatment recurrence of disease (1, 2). The lack of effective therapies for advanced CaP is related to a large extent to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis (3). Thus, the identification of new predictive biomarkers, especially those that are indicative of invasiveness of the disease, which could serve as targets for establishing effectiveness of therapeutic and chemopreventive interventions, will improve clinical management of CaP. S100A4 (also known as mts1), a calcium-binding protein associated with invasion and metastasis of cancer cells, has been reported to be frequently overexpressed in metastatic tumors, normal cells with uninhibited movement (such as macrophages), and transformed cells, and in various cancer types such as breast, ovary, thyroid, lung, esophageal squamous cell carcinoma, gastric, and colon (4-6). Studies have shown that breast cancers expressing high levels of S100A4 have a sign...
We recently demonstrated that Sirt1, a NAD + dependent histone deacetylase, was overexpressed in prostate cancer (PCa) and its inhibition resulted in a significant anti-proliferative response in human PCa cells. Studies have suggested a link between Sirt1 and circadian rhythms, the disruption of which has been linked to cancer. Interestingly, a decreased production of the pineal melatonin has been shown to deregulate the circadian rhythm machinery and increase cancer risk. Further, disruption in melatonin production and circadian rhythmicity has been associated with aging. Here, we challenged our hypothesis that melatonin will impart anti-proliferative response against PCa via inhibiting Sirt1. We demonstrated that melatonin significantly inhibited Sirt1 protein and activity in vitro in multiple human PCa cell lines and melatonin-mediated Sirt1 inhibition was accompanied with a significant decrease in the proliferative potential of PCa cells, but not of normal cells. Forced overexpression of Sirt1 partially rescued the PCa cells from melatonin's anti-proliferative effects, suggesting that Sirt1 is a direct target of melatonin. Employing TRAMP mice, we also demonstrated that oral administration of melatonin, at human achievable doses, significantly inhibited PCa tumorigenesis as shown by decreases in (i) prostate and genitourinary (GU) weight, (ii) serum insulin-like growth factor-1 (IGF-1)/IGF-binding protein-3 (IGFBP3) ratio, (iii) mRNA and protein levels of the proliferation markers (PCNA, Ki-67). This anti-PCa response was accompanied with a significant decrease in Sirt1 in TRAMP prostate. Our data identified melatonin as a novel inhibitor of Sirt1 and suggest that melatonin can inhibit PCa growth via Sirt1 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.