Human babesiosis is a global emerging tick-borne disease caused by infection with intra-erythrocytic parasites of the genus Babesia. With the rise in human babesiosis cases, the discovery and development of new anti-Babesia drugs are essential. Phosphatidylinositol 4-kinase (PI4K) is a widely present eukaryotic enzyme that phosphorylates lipids to regulate intracellular signaling and trafficking. Previously, we have shown that MMV390048, an inhibitor of PI4K, showed potent inhibition against Babesia species, revealing PI4K as a druggable target for babesiosis. However, twice-administered, 7-day regimens failed to clear Babesia microti parasites from the immunocompromised host. Hence, in this study, we wanted to clarify whether targeting PI4K has the potential for the radical cure of babesiosis. In a B. microti-infected SCID mouse model, a 64-day-consecutive treatment with MMV390048 resulted in the clearance of parasites. Meanwhile, an atovaquone (ATO) resistant parasite line was isolated from the group treated with ATO plus azithromycin. A nonsynonymous variant in the Y272C of the cytochrome b gene was confirmed by sequencing. Likewise, MMV390048 showed potent inhibition against ATO-resistant parasites. These results provide evidence of PI4K as a viable drug target for the radical cure of babesiosis, which will contribute to designing new compounds that can eradicate parasites.
Equine theileriosis represents one of the main and serious health problems affecting equines industry globally, that is caused by tick-borne protozoan parasite called T. equi. This study aimed to assess the sensitivity of three diagnostic tools named: microscopic examination of a blood smear, conventional PCR, and Real-Time PCR (qPCR) to detect T. equi among equine population (n = 116) raised in Giza Governorate, Egypt. Microscopic examination of Giemsa-stained blood smears revealed the infection of 16.4% (19/116) of examined equines by T. equi while conventional PCR and qPCR revealed that 29.3% (34/116) and 43.1% (50/116) of examined equines were infected with T. equi respectively. Our results demonstrated that the qPCR had the highest sensitivity (100%) followed by conventional PCR (68%) while microscopic examination had the lowest sensitivity (38%). Furthermore, the negative predictive value (NPV) of qPCR was the highest (100%) compared to conventional PCR and microscopical examination (80.49% and 68.04% respectively) which revealed that all negative cases detected by qPCR were certainly correct compared to the other two diagnostic assays. Therefore, it is highly recommended to incorporate PCR diagnostic assays (conventional PCR and qPCR) alongside microscopic examination to evaluate the epidemiological status of equine theileriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.