Prediction for canceled booking hotels is an important part of hotel revenue management systems in the modern era. Because the predicted result can be used for the optimization of hotel performance. The application of machine learning will be very helpful for predicting canceled booking hotels because machine learning can process complex data. In this research, the proposed methods are Artificial Neural Network (ANN) and Logistic Regression. Later it will be done five times experiments with hyperparameter tuning to see which method is the most optimal to do prediction canceled booking hotel. From five times experiments, experiments number five (logistic regression with GridSearchCV) is the most optimal for predicting canceled booking hotels, with 79.77% accuracy, 85.86% precision, and 55.07% recall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.