Twitter merupakan salah satu media sosial yang banyak digunakan oleh masyarakat sebagai media komunikasi dan memperoleh informasi. Melalui media sosial ini, pengguna dapat menyampaikan berbagai macam opini maupun komentar terhadap suatu isu. Opini dan komentar yang pengguna sampaikan melalui tweets yang ditulisnya pun dapat digunakan untuk analisis sentimen. Maka dari itu, dalam penelitian ini dilakukan analisis sentimen terhadap tweets yang berhubungan dengan Universitas Muhammadiyah Malang (UMM) untuk mengetahui opini masyarakat mengenai kampus ini. Analisis dilakukan dengan mengklasifikasikan tweets yang berisi sentimen masyarakat mengenai UMM. Metode klasifikasi yang digunakan dalam penelitian ini adalah Naïve Bayes dan Support Vector Machine (SVM) dengan pembobotan menggunakan TF-IDF. Hasil komparasi kedua metode menunjukkan bahwa Naïve Bayes mendapatkan hasil akurasi yang lebih baik dari SVM dengan akurasi sebesar 73,65%.
AbstrakTidak selamanya cuaca di Indonesia berjalan dengan normal atau sesuai dengan musimnya, cuaca sering berubah secara tiba-tiba setiap saat karena ada faktor-faktor yang mempengaruhi penurunan dan peningkatan curah hujan. perkiraan cuaca sangatlah dibutuhkan dan sangat bermanfaat olah berbagai pihak karena bisa menjadi acuan bagi berbagai kalangan untuk menjalani kegiatan mereka sehari-hari. Penelitian dilakukan menggunakan metode Deep Learning karena dari beberapa penelitian sebelumnya yang menggunakan Deep Learning dalam kasus yang berbeda mampu menghasilkan akurasi diatas 85%. Deep learning adalah jaringan yang terdiri dari beberapa layer. Layer-layer tersebut berasal dari kumpulan node-node. Arsitektur yang digunakan yaitu Long Short Term Memory(LSTM) karena pada penelitian-penelitian sebelumnya menggunakan LSTM dalam kasus yang berbeda mendapat hasil yang baik yaitu RME yang dihasilkan kecil. LSTM memiliki struktur seperti rantai dan struktur pada tiap sel terdapat 3 gate yaitu forget gate, input gate, dan output gate. Oleh karena itu, perhitungan yang dilakukan lebih kompleks ditambah lagi dengan Deep Learning diharapkan mendapat hasil yang lebih akurat. Data yang digunakan yaitu data curah hujan kota Malang yang berasal dari BMKG. Abstract The weather in Indonesia does not always run normally or in accordance with the season, the weather often changes suddenly at any time because there are factors that affect the decrease and increase in rainfall. weather forecasts are needed and very useful if the various parties because it can be a reference for various circles to undergo their daily activities. The study was conducted using Deep Learning method because of some previous research using Deep Learning in different cases able to produce accuracy above 85%. Deep learning is a network consisting of several layers. The layers are derived from a collection of nodes. The architecture used is Long Short Term Memory (LSTM) because in previous studies using LSTM in different case got good result that is small generated RME. LSTM has a structure like chains and structures in each cell there are 3 gates of forget gate, input gate, and output gate. Therefore, the calculations performed more complex plus the Deep Learning is expected to get more accurate results. The data used is the rainfall data of Malang city that comes from BMKG.
Classification is one of the techniques that exist in data mining and is useful for grouping a data based on the attachment of the data with the sample data. The dataset that is used in this study is the coffee dataset taken from Dataset Coffee Quality Institute on the GitHub platform. The attributes that contained in the dataset are Aroma, Aftertaste, Flavor, Acidity, Balance, Body, Uniformity, Sweetness, Clean Cup, and Copper points. There are 3 classification methods that are used in this study, Stochastic Gradient Descent, Random Forest and Naive Bayes. The aim of this study is to find out which algorithm is the most effective to predict the coffee quality in the dataset. After that, the prediction results will be tested using K-Fold Cross Validation and Area Under the Curve (AUC) method. The results show that Stochastic Gradient Descent obtained the best accuracy results compared to the other two methods with an accuracy of 98% and increased to 99% after tested using K-fold Cross Validation and AUC method.
Media sosial telah lama digunakan masyarakat untuk menyampaikan opini maupun fakta terhadap suatu kejadian, khusunya twitter. Banyak metode yang diusulkan untuk mengekstrak tweet yang berisi opini. Diantaranya mengunakan pendekatan identifikasi kata kunci dalam suatu tweet yang lebih dikenal dengan istilah lexicon based. Meskipun metode ini memiliki nilai presisi yang cukup tinggi dalam mengidentifikasi suatu tweet opini, akan tetapi nilai recall yang dihasilkan cukup rendah. Hal ini karena keterbatasan lexicon yang digunkan sebagai identifier. Dalam penelitian ini, diusulkan kombinasi metode lexicon based dan machine learning dalam mengoptimalkan hasil identifikasi tweet opini. Hasil pengujian menunjukkan peningkatan nilai recall yang cukup signifikan jika dibandingkan dengan metode lexicon based dengan tetap menjaga nilai precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.