This research aimed to determine whether irradiation of 405 nm diode laser with chlorophyll as photosensitizer could degrade the extracellular polymeric substance (EPS) of Enterococcus faecalis (E. faecalis) biofilm. The material for this study needs 25 biofilm formed by E. faecalis was divided equally into five groups. The control negative group (C-) consisted of E. faecalis biofilm, the control positive group (C+) consisted of E. faecalis biofilm and chlorophyll photosensitizers, and the other three treatment group (T1, T2, T3) consisted of E. faecalis biofilm and chlorophyll photosensitizers. Each treatment groups were irradiated for 90 second (s) for T1 group, 105 s for T2 group, and 120 s for T3 group with 405nm diode laser. The degradation EPS of E. faecalis’ biofilm was determined using Confocal Laser Scanning Microscope (CLSM). Irradiation duration affected the degradation EPS of E. faecalis’ biofilm. Chlorophyll with 120 s laser irradiation showed significant degradation EPS of E. faecalis’ biofilm compared to other groups (p < 0.05). Irradiation of diode laser 405nm with chlorophyll photosensitizer 120 s could degrade EPS of E. faecalis biofilm up to 97.51%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.