Two-wheeled self-balancing robot is a popular model in control system experiments which is more widely known as inverted pendulum and cart model. This is a multi-input and multi-output system which is theoretical and has been applied in many systems in daily use. Anyway, most research just focus on balancing this model through try-on experiments or by using simple form of mathematical model. There were still few researches that focus on complete mathematic modeling and designing a mathematical model based controller for such system. This paper analyzed mathematical model of the system. Then, the authors successfully applied a Linear Quadratic Regulator (LQR) controller for this system. This controller was tested with different case of system condition. Controlling results was proved to work well and tested on different case of system condition through simulation on matlab/Simulink program.
Considering the increasing use of security and surveillance systems, moving object tracking systems are an interesting research topic in the field of computer vision. In general, a moving object tracking system consists of two integrated parts, namely the video tracking part that predicts the position of the target in the image plane, and the visual servo part that controls the movement of the camera following the movement of objects in the image plane. For tracking purposes, the camera is used as a visual sensor and applied to a 2-DOF (yawpitch) manipulator platform with an eye-in-hand camera configuration. Although its operation is relatively simple, the yaw-pitch camera platform still needs a good control method to improve its performance. In this study, we propose a moving object tracking system on a prototype yaw-pitch platform. A µ-synthesis controller was used to control the movement of the visual servo part and keep the target in the center of the image plane. The experimental results showed relatively good results from the proposed system to work in real-time conditions with high tracking accuracy in both indoor and outdoor environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.