Educational Data Mining (EDM) is used to extract and discover interesting patterns from educational institution datasets using Machine Learning (ML) algorithms. There is much academic information related to students available. Therefore, it is helpful to apply data mining to extract factors affecting students’ academic performance. In this paper, a web-based system for predicting academic performance and identifying students at risk of failure through academic and demographic factors is developed. The ML model is developed to predict the total score of a course at the early stages. Several ML algorithms are applied, namely: Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Linear Regression (LR). This model applies to the data of female students of the Computer Science Department at Imam Abdulrahman bin Faisal University (IAU). The dataset contains 842 instances for 168 students. Moreover, the results showed that the prediction’s Mean Absolute Percentage Error (MAPE) reached 6.34%, and the academic factors had a higher impact on students’ academic performance than the demographic factors, the midterm exam score in the top. The developed web-based prediction system is available on an online server and can be used by tutors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.