Industrial robots and associated control methods are continuously developing. With the recent progress in the field of artificial intelligence, new perspectives in industrial robot control strategies have emerged, and prospects towards cognitive robots have arisen. AI-based robotic systems are strongly becoming one of the main areas of focus, as flexibility and deep understanding of complex manufacturing processes are becoming the key advantage to raise competitiveness. This review first expresses the significance of smart industrial robot control in manufacturing towards future factories by listing the needs, requirements and introducing the envisioned concept of smart industrial robots. Secondly, the current trends that are based on different learning strategies and methods are explored. Current computer-vision, deep reinforcement learning and imitation learning based robot control approaches and possible applications in manufacturing are investigated. Gaps, challenges, limitations and open issues are identified along the way.
Facial images are of critical importance in many real-world applications from gaming to surveillance. The current literature on facial image analysis, from face detection to face and facial expression recognition, are mainly performed in either RGB, Depth (D), or both of these modalities. But, such analyzes have rarely included Thermal (T) modality. This paper paves the way for performing such facial analyzes using synchronized RGB-D-T facial images by introducing a database of 51 persons including facial images of different rotations, illuminations, and expressions. Furthermore, a face recognition algorithm has been developed to use these images. The experimental results show that face recognition using such three modalities provides better results compared to face recognition in any of such modalities in most of the cases.
Artificial Neural Networks (ANNs) have become an accepted approach for a wide range of challenges. Meanwhile, the advancement of chip manufacturing processes is approaching saturation which calls for new computing solutions. This work presents a novel approach of an FPGA-based accelerator development for fully connected feed-forward neural networks (FFNNs). A specialized tool was developed to facilitate different implementations, which splits FFNN into elementary layers, allocates computational resources and generates high-level C++ description for high-level synthesis (HLS) tools. Various topologies are implemented and benchmarked, and a comparison with related work is provided. The proposed methodology is applied for the implementation of high-throughput virtual sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.