Background and objectives: B-lymphoma Mo-MLV insertion region 1 (Bmi-1) is a stem cell factor that is overexpressed in various human cancer tissues. It has been implicated in cancer cell proliferation, cell invasion, distant metastasis, and chemosensitivity, and is associated with patient survival. Several reports have also identified Bmi-1 protein overexpression in endometrial carcinoma; however, the relationship between Bmi-1 expression and its significance as a clinicopathological parameter is still insufficiently understood. Accordingly, the present study aimed to clarify whether immunohistochemical staining for Bmi-1 in human endometrial carcinoma and normal endometrial tissues can be used as a prognostic and cell proliferation marker. Materials and Methods: Bmi-1 expression was assessed in endometrioid carcinoma (grade 1–3) and normal endometrial tissues (in the proliferative and secretory phases) by immunohistochemistry; protein expression was evaluated using the nuclear labeling index (%) in the hot spot. Furthermore, we examined other independent prognostic and proliferation markers, including the protein levels of Ki-67, p53, and cyclin A utilizing semi-serial sections of endometrial carcinoma tissues. Results: The expression of the Bmi-1 protein was significantly higher in all grades of endometrial carcinoma than in the secretory phase of normal tissues. Moreover, Bmi-1 levels tended to be higher in G2 and G3 tissues than in G1 tissue, without reaching significance. Bmi-1 expression showed no notable differences among International Federation of Gynecology and Obstetrics (FIGO) stages in endometrial carcinoma. Furthermore, we observed a significant positive relationship between Bmi-1 and Ki-67, cyclin A, or p53 by Spearman’s rank correlation test, implying that high Bmi-1 expression can be an independent prognostic marker in endometrial carcinoma. Conclusions: Our study suggests that Bmi-1 levels in endometrial carcinoma tissues may be useful as a reliable proliferation and prognostic biomarker. Recently, the promise of anti-Bmi-1 strategies for the treatment of endometrial carcinoma has been detected. Our results provide fundamental data regarding this anti-Bmi-1 strategy.
Charge transfer processes via deep levels (DLs) of a free-standing n-GaN grown by hydride vapor phase epitaxy is investigated using two types of excitations in time resolved photoluminescence (PL) analysis: above the bandgap energy (E g ) (AEG) and sub-E g (SEG). Using SEG excitation allowing us the PL observation free from carrier dynamics around band-edges such as excitonic recombination varying the population influx to DLs, intrinsic properties of DL-related PL and charge transfer processes are exhibited. The shortening of PL lifetime of red-light luminescence accompanied by a slight increase in its intensity by increasing temperature suggests the dominance of radiative transition.
Changes in the pupil and optokinetic nystagmus (OKN) correspond not only to the luminance and motion direction at the eye position but also to those at the attentional position, respectively. This study examined changes in the spatial shift of covert attention in the pupil and OKN. A test stimulus with random dot patterns of different luminance and direction of motion was presented at a distance to the left and right of the visual field. The results showed that when attention was spatially shifted, changes in the pupil and OKN corresponded to the luminance and motion direction of the attentional stimulus, respectively. This finding suggests that the pupil and OKN can be used to estimate changes in covert attention.
The second messenger 2′3′-cyclic-GMP-AMP (cGAMP) is thought to be transmitted from brain carcinomas to astrocytes via gap junctions, which functions to promote metastasis in the brain parenchyma. In the current study, we established a method to introduce cGAMP into astrocytes, which simulates the state of astrocytes that have been invaded by cGAMP around tumors. Astrocytes incorporating cGAMP were analyzed by metabolomics, which demonstrated that cGAMP increased glutamate production and astrocyte secretion. The same trend was observed for γ-aminobutyric acid (GABA). Conversely, glutamine production and secretion were decreased by cGAMP treatment. Due to the fundamental role of astrocytes in regulation of the glutamine–glutamate cycle, such metabolic changes may represent a potential mechanism and therapeutic target for alteration of the central nervous system (CNS) environment and the malignant transformation of brain carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.