The Distributed Denial of Service (DDoS) attack is one of the most critical issues in network security. These sorts of attacks pose a noteworthy danger to the accessibility of network services for their legitimate users by flooding the bandwidth or network service using various infected computer systems. The targeted servers are overwhelmed with malicious packets or connection requests, causing them to slow down or even crash the server operations which results in preventing genuine users from accessing the service. In this paper, we discussed the detailed classification of DDoS attacks and identified attackers’ motivations behind them and their consequences. Further, the DDoS attacks on IoT devices are elaborated based on applications and network layers. A comprehensive literature review has been conducted on cutting-edge defense techniques to defend against such attacks. An in-depth analysis of each mechanism has been carried out to find the optimal solutions. We fairly evaluated the existing defense techniques for DDoS attacks and presented key findings in comparison tables. Furthermore, this paper provides recommendations for future work for new researchers.
Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.