Through modeling and international exchange, the Abdus Salam International Centre for Theoretical Physicsis fostering advanced climate research in countries where scientific resources are often scarce. P opulations in economically developing nations (EDNs) depend extensively on climate for their welfare (e.g., agriculture, water resources, power generation, industry) and likewise are vulnerable to variability in the climate system, whether due to anthropogenic forcing or natural processes. Furthermore, changes in atmospheric composition (e.g., greenhouse gases and aerosols) and land cover are likely to significantly alter regional climates (Nakicenovic et al. 2001), thereby affecting local socioeconomic development and livelihoods of EDN populations. Therefore, the evaluation of climate change and variability at seasonal-to-multidecadal time scales is of great benefit to these regions.Climate models, both global and regional, are the primary tools that aid in our understanding of the many processes that govern the climate system. In the past, a lack of computational resources has hindered the use of climate models by EDN scientists. However, in the last decade the computing power of the common desktop personal computer (PC) has dramatically increased •
We used a high‐resolution nested climate modeling system to investigate the response of South Asian summer monsoon dynamics to anthropogenic increases in greenhouse gas concentrations. The simulated dynamical features of the summer monsoon compared well with reanalysis data and observations. Further, we found that enhanced greenhouse forcing resulted in overall suppression of summer precipitation, a delay in monsoon onset, and an increase in the occurrence of monsoon break periods. Weakening of the large‐scale monsoon flow and suppression of the dominant intraseasonal oscillatory modes were instrumental in the overall weakening of the South Asian summer monsoon. Such changes in monsoon dynamics could have substantial impacts by decreasing summer precipitation in key areas of South Asia.
[1] Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2°C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2°C may not be sufficient to avoid dangerous climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.