Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic ocean biases through “flux adjustment.” A suite of 12-month duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model to observationally constrained conditions at the start of each forecast period, using both the standard and flux-adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional TC activity months in advance are feasible.
Responses of tropical cyclones (TCs) to CO 2 doubling are explored using coupled global climate models (GCMs) with increasingly refined atmospheric/land horizontal grids (~ 200 km, ~ 50 km and ~ 25 km). The three models exhibit similar changes in background climate fields thought to regulate TC activity, such as relative sea surface temperature (SST), potential intensity, and wind shear. However, global TC frequency decreases substantially in the 50 km model, while the 25 km model shows no significant change. The ~ 25 km model also has a substantial and spatially-ubiquitous increase of Category 3-4-5 hurricanes. Idealized perturbation experiments are performed to understand the TC response. Each model's transient fullycoupled 2 × CO 2 TC activity response is largely recovered by "time-slice" experiments using time-invariant SST perturbations added to each model's own SST climatology. The TC response to SST forcing depends on each model's background climatological SST biases: removing these biases leads to a global TC intensity increase in the ~ 50 km model, and a global TC frequency increase in the ~ 25 km model, in response to CO 2 -induced warming patterns and CO 2 doubling. Isolated CO 2 doubling leads to a significant TC frequency decrease, while isolated uniform SST warming leads to a significant global TC frequency increase; the ~ 25 km model has a greater tendency for frequency increase. Global TC frequency responds to both (1) changes in TC "seeds", which increase due to warming (more so in the ~ 25 km model) and decrease due to higher CO 2 concentrations, and (2) less efficient development of these"seeds" into TCs, largely due to the nonlinear relation between temperature and saturation specific humidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.