Semi-join is the most used technique to optimize the treatment of complex relational queries on distributed architectures. However, the overhead related to semi-join computation can be very high due to data skew and to the high cost of communication in distributed architectures. Internet search engines needs to process vast amounts of raw data every day. Hence, systems that manage such data should assure scalability, reliability and availability issues with reasonable query processing time. Hadoop and Google's File System are examples of such systems. In this paper, we present a new algorithm based on Map-Reduce-Merge model and distributed histograms for processing semi-join operations on such systems. A cost analysis of this algorithm shows that our approach is insensitive to data skew while reducing communication and disk Input/Output costs to a minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.