Unsteady flows contain information about the objects creating them. Aquatic organisms offer intriguing paradigms for extracting flow information using local sensory measurements. In contrast, classical methods for flow analysis require global knowledge of the flow field. Here, we train neural networks to classify flow patterns using local vorticity measurements. Specifically, we consider vortex wakes behind an oscillating airfoil and we evaluate the accuracy of the network in distinguishing between three wake types, 2S, 2P + 2S and 2P + 4S. The network uncovers the salient features of each wake type.
We consider the inverse problem of classifying flow patterns from local sensory measurements. This problem is inspired by the ability of various aquatic organisms to respond to ambient flow signals, and is relevant for translating these abilities to underwater robotic vehicles. In Colvert, Alsalman and Kanso, B&B (2018), we trained neural networks to classify vortical flows by relying on a single flow sensor that measures a 'time history' of the local vorticity. Here, we systematically investigate the effects of distinct types of sensors on the accuracy of flow classification. We consider four types of sensors-vorticity, flow velocities parallel and transverse to the direction of flow propagation, and flow speed-and show that the networks trained using transverse velocity outperform other networks, even when subjected to aggressive data corruption. We then train the network to classify flow patterns instantaneously, using a spatially-distributed array of sensors and a single 'one time' sensory measurement. The network, based on a handful of spatially-distributed sensors, exhibits remarkable accuracy in flow classification. These results lay the groundwork for developing learning algorithms for the dynamic deployment of sensory arrays in unsteady flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.