This research focuses on travel angle control of a laboratory scale bench-top helicopter developed by Quanser Inc. Bench top-helicopter is usually used by engineers and researchers to test their designed controllers before applying to the actual helicopter. Bench-top helicopter has the same behavior as the real helicopter, with 3 degree of freedom. The bench-top helicopter is mounted on a flat surface with two rotors that depends on the voltage supplied to change the direction of the helicopter in 3 different angles. The movement of the helicopter is based on the direction of three-different angles; travel, pitch and yaw angles. The existing Linear Quadratic Regulator-Integral controller used by Quanser Inc has some limitations in terms of tracking capability and settling time; therefore, this research is proposed. The objective of this research is to develop Mamdani-based Fuzzy Logic Controller for travel angle control of bench-top helicopter. Performance comparison has been done with the existing Linear Quadratic Regulator-Integral controller in both simulation and hardware. From the test results, it was found that the performance of Fuzzy Logic Controller is better than LQR-I controller especially for closed-loop simulation at desired angle of 30°. The percentage of overshoot of the Fuzzy Logic Controller has been improved from the existing controller which is 4.912% compared to 7.002% for LQR-I.
Keywords:Bench-top helicopter Linear quadratic integral controller Mamdani-based fuzzy logic controller Travel angle control
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.