Recent matrix completion based methods have not been able to properly model the Haplotype Assembly Problem (HAP) for noisy observations. To deal with such cases, we propose a new Minimum Error Correction (MEC) based matrix completion problem over the manifold of rank-one matrices. We then prove the convergence of a specific iterative algorithm to solve this problem. From the simulation results, the proposed method not only outperforms some well-known matrix completion based methods, but also shows a more accurate result compared to a most recent MEC based algorithm for haplotype estimation.
The max-cut problem addresses the problem of finding a cut for a graph that splits the graph into two subsets of vertices so that the number of edges between these two subsets is as large as possible. However, this problem is NP-Hard, which may be solved by suboptimal algorithms. In this paper, we propose a fast and accurate Riemannian optimization algorithm for solving the max-cut problem. To do so, we develop a gradient descent algorithm and prove its convergence. Our simulation results show that the proposed method is extremely efficient on some already-investigated graphs. Specifically, our method is on average 50 times faster than the best well-known techniques with slightly losing the performance, which is on average 0.9729 of the max-cut value of the others.
<p>The max-cut problem addresses the problem of finding a cut for a graph that splits the graph into two subsets of vertices so that the number of edges between these two subsets is as large as possible. However, this problem is NP-Hard, which may be solved by suboptimal algorithms. In this paper, we propose a fast and accurate Riemannian optimization algorithm for solving the max-cut problem. To do so, we develop a gradient descent algorithm and prove its convergence. Our simulation results show that the proposed method is extremely efficient on some already-investigated graphs. Specifically, our method is on average 50 times faster than the best well-known techniques with slightly losing the performance, which is on average 0.9729 of the max-cut value of the others.</p>
<p></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.