Current methods for inference of phylogenetic trees require running complex pipelines at substantial computational and labor costs, with additional constraints in sequencing coverage, assembly and annotation quality, especially for large datasets. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes and bypasses traditional steps in phylogeny inference, such as genome assembly, annotation and all-versus-all sequence comparisons, while retaining accuracy. In a benchmark encompassing a broad variety of datasets, Read2Tree is 10–100 times faster than assembly-based approaches and in most cases more accurate—the exception being when sequencing coverage is high and reference species very distant. Here, to illustrate the broad applicability of the tool, we reconstruct a yeast tree of life of 435 species spanning 590 million years of evolution. We also apply Read2Tree to >10,000 Coronaviridae samples, accurately classifying highly diverse animal samples and near-identical severe acute respiratory syndrome coronavirus 2 sequences on a single tree. The speed, accuracy and versatility of Read2Tree enable comparative genomics at scale.
We apply matrix completion methods for haplotype assembly from NGS reads to develop the new HapSVT, HapNuc, and HapOPT algorithms. This is performed by applying a mathematical model to convert the reads to an incomplete matrix and estimating unknown components. This process is followed by quantizing and decoding the completed matrix in order to estimate haplotypes. These algorithms are compared to the state-of-the-art algorithms using simulated data as well as the real fosmid data. It is shown that the SNP missing rate and the haplotype block length of the proposed HapOPT are better than those of HapCUT2 with comparable accuracy in terms of reconstruction rate and switch error rate. A program implementing the proposed algorithms in MATLAB is freely available at https://github.com/smajidian/HapMC.
Background: Haplotype information is essential for many genetic and genomic analyses, including genotype-phenotype associations in human, animals and plants. Haplotype assembly is a method for reconstructing haplotypes from DNA sequencing reads. By the advent of new sequencing technologies, new algorithms are needed to ensure long and accurate haplotypes. While a few linked-read haplotype assembly algorithms are available for diploid genomes, to the best of our knowledge, no algorithms have yet been proposed for polyploids specifically exploiting linked reads. Results: The first haplotyping algorithm designed for linked reads generated from a polyploid genome is presented, built on a typical short-read haplotyping method, SDhaP. Using the input aligned reads and called variants, the haplotype-relevant information is extracted. Next, reads with the same barcodes are combined to produce molecule-specific fragments. Then, these fragments are clustered into strongly connected components which are then used as input of a haplotype assembly core in order to estimate accurate and long haplotypes. Conclusions: Hap10 is a novel algorithm for haplotype assembly of polyploid genomes using linked reads. The performance of the algorithms is evaluated in a number of simulation scenarios and its applicability is demonstrated on a real dataset of sweet potato.
Recent matrix completion based methods have not been able to properly model the Haplotype Assembly Problem (HAP) for noisy observations. To deal with such cases, we propose a new Minimum Error Correction (MEC) based matrix completion problem over the manifold of rank-one matrices. We then prove the convergence of a specific iterative algorithm to solve this problem. From the simulation results, the proposed method not only outperforms some well-known matrix completion based methods, but also shows a more accurate result compared to a most recent MEC based algorithm for haplotype estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.