The authors report an enhanced infrared spectral response of GaAs-based solar cells that incorporate type II GaSb quantum dots ͑QDs͒ formed using interfacial misfit array growth mode. The material and devices, grown by molecular beam epitaxy, are characterized by current-voltage and spectral response characteristics. From 0.9 to 1.36 m, these solar cells show significantly more infrared response compared to reference GaAs cells and previously reported InAs QD solar cells. The short circuit current density and open circuit voltages of solar cells with and without dots measured under identical conditions are 1.29 mA/ cm 2 , 0.37 V and 1.17 mA/ cm 2 , 0.6 V, respectively.
We report optical, electrical, and spectral response characteristics of three-stack InAs∕GaAs quantum dot solar cells with and without GaP strain compensation (SC) layers. The short circuit current density, open circuit voltage, and external quantum efficiency of these cells under air mass 1.5G at 290mW∕cm2 illumination are presented and compared with a GaAs control cell. The cells with SC layers show superior device quality, confirmed by I-V and spectral response measurements. The quantum dot solar cells show an extended photoresponse compared to the GaAs control cell. The effect of the SC layer thickness on device performance is also presented.
The InAs/InGaAs DWELL solar cell grown by MBE is a standard pin diode structure with six layers of InAs QDs embedded in InGaAs quantum wells placed within a 200-nm intrinsic GaAs region. The GaAs control wafer consists of the same pin configuration but without the DWELL structure. The typical DWELL solar cell exhibits higher short current density while maintaining nearly the same open-circuit voltage for different scales, and the advantage of higher short current density is more obvious in the smaller cells. In contrast, the smaller size cells, which have a higher perimeter to area ratio, make edge recombination current dominant in the GaAs control cells, and thus their open circuit voltage and efficiency severely degrade. The open-circuit voltage and efficiency under AM1.5G of the GaAs control cell decrease from 0.914V and 8.85% to 0.834V and 7.41%, respectively, as the size shrinks from 5*5mm 2 to 2*2mm 2 , compared to the increase from 0.665V and 7.04% to 0.675V and 8.17%, respectively, in the DWELL solar cells.The lower open-circuit voltage in the smaller GaAs control cells is caused by strong Shockley-Read-Hall (SRH) recombination on the perimeter, which leads to a shoulder in the semi-logarithmic dark IV curve. However, despite the fact that the DWELL and GaAs control cells were processed simultaneously, the shoulders on the dark IV curve disappear in all the DWELL cells over the whole processed wafer. As has been discussed in previous research on transport in QDs, it is believed that the DWELL cells inhibit lateral diffusion current and thus edge recombination by collection first in the InGaAs quantum well and then trapping in the embedded InAs dots. This conclusion is further supported by the almost constant current densities of the different area DWELL devices as a function of voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.