With solar and wind power generation reaching unprecedented growth rates globally, much research effort has recently gone into a comprehensive mapping of the worldwide potential of these variable renewable electricity (VRE) sources. From a perspective of energy systems analysis, the locations with the strongest resources may not necessarily be the best candidates for investment in new power plants, since the distance from existing grid and road infrastructures and the temporal variability of power generation also matter. To inform energy planning and policymaking, cost-optimisation models for energy systems must be fed with adequate data on potential sites for VRE plants, including costs reflective of resource strength, grid expansion needs and full hourly generation profiles. Such data, tailored to energy system models, has been lacking up to now. In this study, we present a new open-source and open-access all-Africa dataset of “supply regions” for solar photovoltaic and onshore wind power to feed energy models and inform capacity expansion planning.
Microgrid systems are built to integrate a generation mix of solar and wind renewable energy resources that are generally intermittent in nature. This paper presents a novel decentralized multi-agent system to securely operate microgrids in real-time while maintaining generation, load balance. Agents provide a normal operation in a grid-connected mode and a contingency operation in an islanded mode for fault handling. Fault handling is especially critical in microgrid operation to simulate possible contingencies and microgrid outages in a real-world scenario. A robust agent design has been implemented using MATLAB-Simulink and Java Agent Development Framework technologies to simulate microgrids with load management and distributed generators control. The microgrid of the German Jordanian University has been used for simulation for Summer and Winter photovoltaic generation and load profiles. The results show agent capabilities to operate microgrid in real-time and its ability to coordinate and adjust generation and load. In a simulated fault incident, agents coordinate and adjust to a normal operation in 0.012 seconds, a negligible time for microgrid restoration. This clearly shows that the multi-agent system is a viable solution to operate MG in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.