Chest X-ray (CXR) imaging is one of the most feasible diagnosis modalities for early detection of the infection of COVID-19 viruses, which is classified as a pandemic according to the World Health Organization (WHO) report in December 2019. COVID-19 is a rapid natural mutual virus that belongs to the coronavirus family. CXR scans are one of the vital tools to early detect COVID-19 to monitor further and control its virus spread. Classification of COVID-19 aims to detect whether a subject is infected or not. In this article, a model is proposed for analyzing and evaluating grayscale CXR images called Chest X-Ray COVID Network (CXRVN) based on three different COVID-19 X-Ray datasets. The proposed CXRVN model is a lightweight architecture that depends on a single fully connected layer representing the essential features and thus reducing the total memory usage and processing time verse pre-trained models and others. The CXRVN adopts two optimizers: mini-batch gradient descent and Adam optimizer, and the model has almost the same performance. Besides, CXRVN accepts CXR images in grayscale that are a perfect image representation for CXR and consume less memory storage and processing time. Hence, CXRVN can analyze the CXR image with high accuracy in a few milliseconds. The consequences of the learning process focus on decision making using a scoring function called SoftMax that leads to high rate true-positive classification. The CXRVN model is trained using three different datasets and compared to the pre-trained models: GoogleNet, ResNet and AlexNet, using the fine-tuning and transfer learning technologies for the evaluation process. To verify the effectiveness of the CXRVN model, it was evaluated in terms of the well-known performance measures such as precision, sensitivity, F1-score and accuracy. The evaluation results based on sensitivity, precision, recall, accuracy, and F1 score demonstrated that, after GAN augmentation, the accuracy reached 96.7% in experiment 2 (Dataset-2) for two classes and 93.07% in experiment-3 (Dataset-3) for three classes, while the average accuracy of the proposed CXRVN model is 94.5%.
Background and Purpose COVID-19 is a new strain of viruses that causes life stoppage worldwide. At this time, the new coronavirus COVID-19 is spreading rapidly across the world and poses a threat to people’s health. Experimental medical tests and analysis have shown that the infection of lungs occurs in almost all COVID-19 patients. Although Computed Tomography of the chest is a useful imaging method for diagnosing diseases related to the lung, chest X-ray (CXR) is more widely available, mainly due to its lower price and results. Deep learning (DL), one of the significant popular artificial intelligence techniques, is an effective way to help doctors analyze how a large number of CXR images is crucial to performance. Materials and Methods In this article, we propose a novel perceptual two-layer image fusion using DL to obtain more informative CXR images for a COVID-19 dataset. To assess the proposed algorithm performance, the dataset used for this work includes 87 CXR images acquired from 25 cases, all of which were confirmed with COVID-19. The dataset preprocessing is needed to facilitate the role of convolutional neural networks (CNN). Thus, hybrid decomposition and fusion of Nonsubsampled Contourlet Transform (NSCT) and CNN_VGG19 as feature extractor was used. Results Our experimental results show that imbalanced COVID-19 datasets can be reliably generated by the algorithm established here. Compared to the COVID-19 dataset used, the fuzed images have more features and characteristics. In evaluation performance measures, six metrics are applied, such as QAB/F, QMI, PSNR, SSIM, SF, and STD, to determine the evaluation of various medical image fusion (MIF). In the QMI, PSNR, SSIM, the proposed algorithm NSCT + CNN_VGG19 achieves the greatest and the features characteristics found in the fuzed image is the largest. We can deduce that the proposed fusion algorithm is efficient enough to generate CXR COVID-19 images that are more useful for the examiner to explore patient status. Conclusions A novel image fusion algorithm using DL for an imbalanced COVID-19 dataset is the crucial contribution of this work. Extensive results of the experiment display that the proposed algorithm NSCT + CNN_VGG19 outperforms competitive image fusion algorithms.
Background and Objective The impact of diet on COVID-19 patients has been a global concern since the pandemic began. Choosing different types of food affects peoples’ mental and physical health and, with persistent consumption of certain types of food and frequent eating, there may be an increased likelihood of death. In this paper, a regression system is employed to evaluate the prediction of death status based on food categories. Methods A Healthy Artificial Nutrition Analysis (HANA) model is proposed. The proposed model is used to generate a food recommendation system and track individual habits during the COVID-19 pandemic to ensure healthy foods are recommended. To collect information about the different types of foods that most of the world's population eat, the COVID-19 Healthy Diet Dataset was used. This dataset includes different types of foods from 170 countries around the world as well as obesity, undernutrition, death, and COVID-19 data as percentages of the total population. The dataset was used to predict the status of death using different machine learning regression models, i.e., linear regression (ridge regression, simple linear regularization, and elastic net regression), and AdaBoost models. Results The death status was predicted with high accuracy, and the food categories related to death were identified with promising accuracy. The Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R 2 metrics and 20-fold cross-validation were used to evaluate the accuracy of the prediction models for the COVID-19 Healthy Diet Dataset. The evaluations demonstrated that elastic net regression was the most efficient prediction model. Based on an in-depth analysis of recent nutrition recommendations by WHO, we confirm the same advice already introduced in the WHO report 1 . Overall, the outcomes also indicate that the remedying effects of COVID-19 patients are most important to people which eat more vegetal products, oilcrops grains, beverages, and cereals - excluding beer. Moreover, people consuming more animal products, animal fats, meat, milk - including butter, sugar and sweetened foods, sugar crops, were associated with a higher number of deaths and fewer patient recoveries. The outcome of sugar consumption was important and the rates of death and recovery were influenced by obesity. Conclusions Based on evaluation metrics, the proposed HANA model may outperform other algorithms used to predict death status. The results of this study may direct patients to eat particular types of food to reduce the possibility of becoming infected with the COVID-19 virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.