In this paper, a novel adaptive tuning method of PID neural network (PIDNN) controller for nonlinear process is proposed. The method utilizes an improved gradient descent method to adjust PIDNN parameters where the margin stability will be employed to get high tracking performance and robustness with regard to external load disturbance and parameter variation. Simulation results show the effectiveness of the proposed algorithm compared with other well-known learning methods.
This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.
In this paper, a stable adaptive neural sliding mode controller is developed for a class of multivariable uncertain nonlinear systems. For these systems not all state variables are available for measurements. By designing a state observer, adaptive neural systems, which are used to model unknown functions, can be constructed using the state estimations. Based on Lyapunov stability theorem, the proposed adaptive neural control system can guarantee the stability of the whole closed loop system and obtain good tracking performances. Adaptive laws are proposed to adjust the free parameters of the neural models. Simulation results illustrate the design procedure and demonstrate the tracking performances of the proposed controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.