In this paper, a stable adaptive neural sliding mode controller is developed for a class of multivariable uncertain nonlinear systems. For these systems not all state variables are available for measurements. By designing a state observer, adaptive neural systems, which are used to model unknown functions, can be constructed using the state estimations. Based on Lyapunov stability theorem, the proposed adaptive neural control system can guarantee the stability of the whole closed loop system and obtain good tracking performances. Adaptive laws are proposed to adjust the free parameters of the neural models. Simulation results illustrate the design procedure and demonstrate the tracking performances of the proposed controller.
PurposeThe purpose of this paper is to present an adaptive neuro‐sliding mode control scheme for uncertain nonlinear systems with Lyapunov approach.Design/methodology/approachThe paper focuses on neural network (NN) adaptive control for nonlinear systems in the presence of parametric uncertainties. The plant model structure is represented by a NNs system. The essential idea of the online parametric estimation of the plant model is based on a comparison of the measured state with the estimated one. The proposed adaptive neural controller takes advantages of both the sliding mode control and proportional integral (PI) control. The chattering phenomenon is attenuated and robust performances are ensured. Based on Lyapunov stability theorem, the proposed adaptive neural control system can guarantee the stability of the whole closed‐loop system and obtain good‐tracking performances. Adaptive laws are proposed to adjust the free parameters of the neural models.FindingsSimulation results show that the adaptive neuro‐sliding mode control approach works satisfactorily for nonlinear systems in the presence of parametric uncertainties.Originality/valueThe proposed adaptive neuro‐sliding mode control approach is a mixture of classical neural controller with a supervisory controller. The PI controller is used to attenuate the chattering phenomena. Based on the Lyapunov stability theorem, it is rigorously proved that the stability of the whole closed‐loop system is ensured and the tracking performance is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.