HIV persists in a reservoir of latently infected CD4+ T cells in individuals treated with highly active antiretroviral therapy (HAART). Here we identify central memory (TCM) and transitional memory (TTM) CD4+ T cells as the major cellular reservoirs for HIV and find that viral persistence is ensured by two different mechanisms. HIV primarily persists in TCM cells in subjects showing reconstitution of the CD4+ compartment upon HAART. This reservoir is maintained through T cell survival and low-level antigen-driven proliferation and is slowly depleted with time. In contrast, proviral DNA is preferentially detected in TTM cells from aviremic individuals with low CD4+ counts and higher amounts of interleukin-7–mediated homeostatic proliferation, a mechanism that ensures the persistence of these cells. Our results suggest that viral eradication might be achieved through the combined use of strategic interventions targeting viral replication and, as in cancer, drugs that interfere with the self renewal and persistence of proliferating memory T cells.
There is limited knowledge on the identity of primary CD4+ T cell subsets selectively targeted by HIV-1 in vivo. In this study, we established a link between HIV permissiveness, phenotype/homing potential, and lineage commitment in primary CD4+ T cells. CCR4+CCR6+, CCR4+CCR6−, CXCR3+CCR6+, and CXCR3+CCR6− T cells expressed cytokines and transcription factors specific for Th17, Th2, Th1Th17, and Th1 lineages, respectively. CCR4+CCR6+ and CXCR3+CCR6+ T cells expressed the HIV coreceptors CCR5 and CXCR4 and were permissive to R5 and X4 HIV replication. CCR4+CCR6− T cells expressed CXCR4 but not CCR5 and were permissive to X4 HIV only. CXCR3+CCR6− T cells expressed CCR5 and CXCR4 but were relatively resistant to R5 and X4 HIV in vitro. Total CCR6+ T cells compared with CCR6− T cells harbored higher levels of integrated HIV DNA in treatment-naive HIV-infected subjects. The frequency of total CCR6+ T cells and those of CCR4+CCR6+ and CXCR3+CCR6+ T cells were diminished in chronically infected HIV-positive subjects, despite viral-suppressive therapy. A high-throughput analysis of cytokine profiles identified CXCR3+CCR6+ T cells as a major source of TNF-α and CCL20 and demonstrated a decreased TNF-α/IL-10 ratio in CXCR3+CCR6− T cells. Finally, CCR4+CCR6+ and CXCR3+CCR6+ T cells exhibited gut- and lymph node-homing potential. Thus, we identified CCR4+CCR6+ and CXCR3+CCR6+ T cells as highly permissive to HIV replication, with potential to infiltrate and recruit more CCR6+ T cells into anatomic sites of viral replication. It is necessary that new therapeutic strategies against HIV interfere with viral replication/persistence in discrete CCR6+ T cell subsets.
Viral replication and microbial translocation from the gut to the blood during HIV infection lead to hyperimmune activation, which contributes to the decline in CD4+ T cell numbers during HIV infection. Programmed death-1 (PD-1) and interleukin-10 (IL-10) are both upregulated during HIV infection. Blocking interactions between PD-1 and programmed death ligand-1 (PD-L1) and between IL-10 and IL-10 receptor (IL-10R) results in viral clearance and improves T cell function in animal models of chronic viral infections. Here we show that high amounts of microbial products and inflammatory cytokines in the plasma of HIV-infected subjects lead to upregulation of PD-1 expression on monocytes that correlates with high plasma concentrations of IL-10. Triggering of PD-1 expressed on monocytes by PD-L1 expressed on various cell types induced IL-10 production and led to reversible CD4+ T cell dysfunction. We describe a new function for PD-1 whereby microbial products inhibit T cell expansion and function by upregulating PD-1 levels and IL-10 production by monocytes after binding of PD-1 by PD-L1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.