Introduction and Aim: Cinnarizine is indicated orally for treating vertigo associated with Ménière's syndrome and has a local anesthetic effect as well. The present study aims to develop an aural Cinnarizine mucoadhesive transfersomal gel to overcome the first-pass metabolism. Methods: Eighteen Cinnarizine transfersomes were prepared by the thin-film hydration technique using different types of phosphatidylcholine and edge activators in different ratios. Formulae were tested for their appearance, entrapment efficiency, and in-vitro drug release after eight hours. F1, F4, F7, F9, F10, and F12 were selected to be examined for particle size, polydispersity index, and zeta potential. According to the previous parameters, F1 and F10 were incorporated into gels using different polymers according to factorial design 23. The eight gels were tested for appearance, pH, mucoadhesion, spreadability, drug content, in-vitro drug release after eight hours, and rheology. The transfersomal gel F1A was subjected to FTIR analysis and in-vivo pharmacokinetic study. Results: The transfersomal dispersion colors were ranging between the white and yellow. Their EE % ranged from 64.36±1.985% to 94.09±1.74%, and their in-vitro release percentages were between 61.82±1.92% and 95.92±1.18%. Also, the vesicles PS ranged from 212.3 ±30.05nm to 2150±35.35nm, DI from 0.238±0.134 to 1±0.00 and zeta potential from −57.5 ±2.54 to +4.73±1.57 mV. The transfersomal gels showed pseudoplastic behavior, pH range of 5.5 to 8, a mucoadhesive force of 169.188±1.26 to 321.212±6.94 (dyne/cm 2 ×10 2), spreadability of 40 ±7.03mm to 138 ±3.77mm, and in-vitro drug release of 81.63±1.128% to 97.78 ±0.102%. The IR spectra of the (drug-excipients) physical mixture revealed that there were no shifts of incompatibility. The in-vivo pharmacokinetic study illustrated that [AUC] 0-24 of F1A was significantly higher than that of tablets at (P< 0.05), equivalent to 703.563±26.470 and 494.256±9.621ɲg.hr/mL respectively. Conclusion: The study revealed that Cinnarizine aural mucoadhesive targeted delivery provides an improved systemic bioavailability over the conventional oral route.
Objective. To formulate and evaluate slow release ketoconazole and ketorolac to treat fungal keratitis and associated inflammation. Methods. Experimental study with the following outcome measures. Pharmaceutical Evaluation. Mucoadhesive gels containing ketoconazole and ketorolac were used. Microbiological in vitro evaluation was performed using cup method. In vivo evaluation was performed on 24 rabbits divided into 2 groups, 12 rabbits each, group A (fast release formula; 6 times daily) and group B (slow release formula; 3 times daily). Each group was divided into two subgroups (6 rabbits each). Both eyes of rabbits were inoculated with Candida albicans. The left eye of all rabbits received the combination formulae. The right eye for one subgroup received ketoconazole as control 1 while the other subgroup received placebo as control 2. Clinical follow-up was done and, finally, the corneas were used for microbiological and pathological evaluation. Results. Gels containing high polymer concentration showed both high viscosity and mucoadhesion properties with slower drug release. The infected eyes treated with slow release formula containing both drugs showed better curing of the cornea and pathologically less inflammation than eyes treated with fast release formula. Conclusion. Slow release formula containing ketoconazole and ketorolac showed higher activity than fast release formula against fungal keratitis and associated inflammation.
Objective: This study aimed to enhance the oral solubility and dissolution of poorly soluble lornoxicam by anti-solvent precipitation, and the manufacture of oral tablets by the phase transition method. Methods: The solvent was mixture of polyethylene glycol 400 and absolute ethanol. Three stabilizers Inutec SP1, Pluronic F127, Sucrose ester S1670 at two concentrations and two matrix formers Mannitol, and Avicel PH102 were used to obtain 12 formulae. The formulae were characterized regarding their infrared spectroscopy (IR), differential scanning calorimetry (DSC), particle size (PS) measurement, drug content and dissolution. Further characterizations were done for the optimum formula by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Four tablet formulae were manufactured by phase transition method. The optimum tablets (T3) were evaluated through hardness, drug content, disintegration, dissolution, IR, and stability studies. Finally, (T3) was compared to conventional tablets in New Zealand rabbits using crossover design. Results: The dissolution rate for the prepared formulae was enhanced, from 3.44 to 5.96 folds. Statistical significance was obtained using one and two way ANOVA among formulae. The optimum tablet formula (T3) had hardness 5.637±1.57 kg, drug content 90.424±1.19%, disintegration time 341.5±9.62 s and the drug dissolved 72.107±0.0025%. Stability, after one month storage of the selected tablets at (25 °c/60% relative humidity), was satisfactory. The absorption extent of lornoxicam from (T3) compared to the conventional tablets was higher. Conclusion: Taken together, the obtained results confirmed successfully the potential of the promising formula (T3), over the conventional tablets of lornoxicam.
Telmisartan (Tel) is a potent antihypertensive drug with a very poor aqueous solubility, especially in pH ranging from 3 to 9 (i.e., biological fluids) that results in poor bioavailability. Our aim was to improve Tel solubility and dissolution rates without the need for expensive multistep procedures, and without inclusion of alkalinizers. This study adopted the use of surface solid dispersions (SSDs) employing superdisintegrants, hydrophilic polymers and combined carriers including a superdisintegrant with a hydrophilic polymer. Tel-SSDs were formulated using thesolvent evaporation method. Compatibility between Tel and different carriers was examined via FT-IR. Tel-SSDs were evaluated optically and thermally to reveal a complete loss of the crystalline nature of the drug. Both drug content and percentage yield were calculated to judge the efficiency of the preparation technique used. Saturation, aqueous solubility, and dissolutions rates were determined. Dissolution profiles were studied using model dependent and independent approaches and were subjected to the pair-wise procedure using the DDsolver software program. Effect of aging was studied by comparing the drug content and dissolution profiles of freshly prepared SSDs with aged samples. All Tel-SSDs showed acceptable physical properties. Tel-SSDs showed pertinent enhancement related to the carrier used. Combined surface solid dispersions employing superdisintegrant croscarmellose sodium with either hydrophilic polymer PEG 4000 or Poloxamer 407 gave remarkable enhancement in solubility and dissolution rates of Tel where more than 90% of the drug was released within 20 min. The effect of aging results proved a non-significant difference in the drug content and dissolution profiles between fresh and aged samples. Formulation of Tel SSDs using combined carriers proved to be effective in enhancing the aqueous solubility and dissolution rates of Tel, as well as showing good stability upon aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.