The advances in satellite technology developments have recently seen a large number of small satellites being launched into space on Low Earth orbit (LEO) to collect massive data such as Earth observational imagery. The traditional way which downloads such data to a ground station (GS) to train a machine learning (ML) model is not desirable due to the bandwidth limitation and intermittent connectivity between LEO satellites and the GS. Satellite edge computing (SEC), on the other hand, allows each satellite to train an ML model onboard and uploads only the model to the GS which appears to be a promising concept. This paper proposes FedLEO, a novel federated learning (FL) framework that realizes the concept of SEC and overcomes the limitation (slow convergence) of existing FL-based solutions. FedLEO (1) augments the conventional FL's star topology with "horizontal" intra-plane communication pathways in which model propagation among satellites takes place; (2) optimally schedules communication between "sink" satellites and the GS by exploiting the predictability of satellite orbiting patterns. We evaluate FedLEO extensively and benchmark it with the state of the art. Our results show that FedLEO drastically expedites FL convergence, without sacrificingin fact it considerably increases-the model accuracy.
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years, due to their distinctive capabilities of providing broadband Internet access and enabling global data acquisition as well as large-scale AI applications. To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) and then training a model in a centralized manner, is not desirable because of the limited bandwidth, intermittent connectivity between satellites and the GS, and privacy concerns on transmitting raw data. Federated Learning (FL) as an emerging communication and computing paradigm provides a potentially supreme solution to this problem. However, we show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels. To this end, we propose to introduce high-altitude platforms (HAPs) as distributed parameter servers (PSs) and propose a synchronous FL algorithm, FedHAP, to accomplish model training in an efficient manner via inter-satellite collaboration. To accelerate convergence, we also propose a layered communication scheme between satellites and HAPs that FedHAP leverages. Our simulations demonstrate that FedHAP attains model convergence in much fewer communication rounds than benchmarks, cutting the training time substantially from several days down to a few hours with the same level of resulting accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.