The advances in satellite technology developments have recently seen a large number of small satellites being launched into space on Low Earth orbit (LEO) to collect massive data such as Earth observational imagery. The traditional way which downloads such data to a ground station (GS) to train a machine learning (ML) model is not desirable due to the bandwidth limitation and intermittent connectivity between LEO satellites and the GS. Satellite edge computing (SEC), on the other hand, allows each satellite to train an ML model onboard and uploads only the model to the GS which appears to be a promising concept. This paper proposes FedLEO, a novel federated learning (FL) framework that realizes the concept of SEC and overcomes the limitation (slow convergence) of existing FL-based solutions. FedLEO (1) augments the conventional FL's star topology with "horizontal" intra-plane communication pathways in which model propagation among satellites takes place; (2) optimally schedules communication between "sink" satellites and the GS by exploiting the predictability of satellite orbiting patterns. We evaluate FedLEO extensively and benchmark it with the state of the art. Our results show that FedLEO drastically expedites FL convergence, without sacrificingin fact it considerably increases-the model accuracy.
In the single pruning algorithm, channel pruning or filter pruning is used to compress the deep convolution neural network, and there are still many redundant parameters in the compressed model. Directly pruning the filter will largely cause the loss of key information and affect the accuracy of model classification. To solve these problems, a parallel pruning algorithm combined with image enhancement is proposed. Firstly, in order to improve the generalization ability of the model, a data enhancement method of random erasure is introduced. Secondly, according to the trained batch normalization layer scaling factor, the channels with small contribution are cut off, the model is initially thinned, and then the filters are pruned. By calculating the geometric median of the filters, redundant filters similar to them are found and pruned, and their similarity is measured by calculating the distance between filters. Pruning was done using VGG19 and DenseNet40 on cifar10 and cifar100 data sets. The experimental results show that this algorithm can improve the accuracy of the model, and at the same time, it can compress the calculation and parameters of the model to a certain extent. Finally, this method is applied in practice, and combined with transfer learning, traffic objects are classified and detected on the mobile phone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.