Euryops pectinatus is a South African ornamental plant belonging to family Asteraceae. The present work evaluates the cytotoxic activity and phytochemical profile of the flower extract. Metabolite profiling was performed using HPLC-PDA-ESI-MS/MS. Total phenolics and flavonoids content were assessed. Cytotoxicity was evaluated against 6 different cancer cell lines using MTT assay. The possible underlying mechanism was proposed. We analyzed whether the extract could overcome the resistance of multidrug-resistant cancer cells for doxorubicin. The effect of combination of E. pectinatus with doxorubicin was also studied. Additionally, the potential inhibitory activity of the identified phytochemicals to PB1 protein was analyzed using in silico molecular docking. Twenty-five compounds were tentatively identified. Total phenolic and flavonoid contents represented 49.41 ± 0.66 and 23.37 ± 0.23 µg/mg dried flower extract, respectively. The extract showed selective cytotoxicity against Caco2 cells but its main effect goes beyond mere cytotoxicity. It showed strong inhibition of P-glycoprotein, which helps to overcome multidrug resistance to classical chemotherapeutic agents. In silico molecular docking showed that dicaffeoyl quinic acid, kaempferol-O-rutinoside, rutin, and isorhamnetin-O-rutinoside exhibited the most potent inhibitory activity to PB1 involved in tumor progression. Euryops pectinatus flower heads could have promising selective cytotoxicity alone or in combination with other chemotherapeutic agents to counteract multidrug resistance.
Pulmonary fibrosis is a devastating disease with unknown treatment. All-trans retinoic acid (ATRA) attenuates bleomycin-induced lung fibrosis by different mechanistic pathways. However, the role of retinoid receptors in lung fibrosis is still unclear. Forskolin (FSK), a potent inhibitor for the revolutionary hedgehog (Hh) signalling pathway, has a promising antifibrotic effect on other organs such as the liver. This study investigates the interplay between the retinoid receptors modulation and the Hh signalling pathway in bleomycin (BLM)-induced pulmonary fibrosis. Rats were randomised and administrated a single dose of 7.5 mg/kg of BLM alone and with ATRA, FSK and both of them. The effects of FSK and ATRA on lung functions, oxidative stress markers (malondialdehyde [MDA], glutathione [GSH], superoxide dismutase [SOD] and catalase [CAT]), retinoid markers (retinoic acid receptors [RAR] and rexinoid X receptors [RXR]) and Hh signalling markers (patched homolog 1 [Ptch-1], Smoothened [Smo] and glioblastoma-2 [Gli-2]) were assessed. In single therapies, ATRA and FSK ameliorated BLM-induced lung fibrosis. On the contrary, a combination of both drugs synergistically reversed the effect of BLM-induced lung fibrosis, as indicated by the enhancement of lung functions and the decrease of the α-smooth muscle actin (α-SMA) expression and collagen deposition. Additionally, FSK and ATRA ameliorated oxidative stress and inflammation, reduced transforming growth factor β1 (TGF-β1) levels and reversed the effect of BLM on the mRNA expression of Ptch-1, Smo andGli-2. FSK inhibited the Hh pathway and also activated protein kinase A (PKA) that is, in part, involved in phosphorylation of RAR/RXR heterodimer (a key step in retinoid receptor activation). The present results suggest that a combination of FSK and ATRA has a promising therapeutic value for lung fibrosis management.
Series of 1-(N-phenyl-2-(heteroalicyclic-1-yl)acetamido)cyclohexane-1-carboxamide derivatives (5a-m) and 1-(phenyl(heteroalicyclic-1-ylmethyl)amino)cyclohexane-1-carboxamide (6a-f) were designed and synthesized with biological interest through coupling of 1-(2-chloro-N-phenylacetamido)cyclohexane-1-carboxamide ( 4) and (phenylamino)cycloakanecarboxamide (2) with different amines. The structures of the target compounds were elucidated via IR, 1 H and 13 C NMR, MS, and microanalysis. Compounds 5a-m and 6a-f were evaluated for their in vitro antitumor activity against four different cancer cell lines, MCF-7, HepG2, A549, and Caco-2. Compound 5i exhibited a promising activity against breast cancer cell line (IC 50 value = 3.25 μM) compared with doxorubicin (IC 50 value = 6.77 μM). Results from apoptosis and cell cycle analysis for compound 5i revealed good antitumor activity against MCF-7 cancer cell line and potent inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.