Euryops pectinatus is a South African ornamental plant belonging to family Asteraceae. The present work evaluates the cytotoxic activity and phytochemical profile of the flower extract. Metabolite profiling was performed using HPLC-PDA-ESI-MS/MS. Total phenolics and flavonoids content were assessed. Cytotoxicity was evaluated against 6 different cancer cell lines using MTT assay. The possible underlying mechanism was proposed. We analyzed whether the extract could overcome the resistance of multidrug-resistant cancer cells for doxorubicin. The effect of combination of E. pectinatus with doxorubicin was also studied. Additionally, the potential inhibitory activity of the identified phytochemicals to PB1 protein was analyzed using in silico molecular docking. Twenty-five compounds were tentatively identified. Total phenolic and flavonoid contents represented 49.41 ± 0.66 and 23.37 ± 0.23 µg/mg dried flower extract, respectively. The extract showed selective cytotoxicity against Caco2 cells but its main effect goes beyond mere cytotoxicity. It showed strong inhibition of P-glycoprotein, which helps to overcome multidrug resistance to classical chemotherapeutic agents. In silico molecular docking showed that dicaffeoyl quinic acid, kaempferol-O-rutinoside, rutin, and isorhamnetin-O-rutinoside exhibited the most potent inhibitory activity to PB1 involved in tumor progression. Euryops pectinatus flower heads could have promising selective cytotoxicity alone or in combination with other chemotherapeutic agents to counteract multidrug resistance.
Prickly pear fruit peel constitutes a high percentage of the fruit and could be a natural, economic agro-industrial waste of potential use in the nutraceutical industry.
Bacopa monnieri has been used for centuries in Ayurvedic medicine, alone or in combination with other herbs, as a memory and learning enhancer, sedative, and anti-epileptic. This review aimed to highlight the health benefits of B. monnieri extracts (BME), focusing on anti-cancer and neurodegenerative diseases. We examined the clinical studies on phytochemistry and pharmacological application of BME. We further highlighted the mechanism of action of these extracts in varying types of cancer and their therapeutic implications. In addition, we investigated the underlying molecular mechanism in therapeutic interventions, toxicities, safety concerns and synergistic potential in cognition and neuroprotection. Overall, this review provides deeper insights into the therapeutic implications of Brahmi as a lead formulation for treating neurological disorders and exerting cognitive-enhancing effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.