In this article, we introduce a new three-parameter lifetime model called the Burr X exponentiated Weibull model. The major justification for the practicality of the new lifetime model is based on the wider use of the exponentiated Weibull and Weibull models. We are motivated to propose this new lifetime model because it exhibits increasing, decreasing, bathtub, J shaped and constant hazard rates. The new lifetime model can be viewed as a mixture of the exponentiated Weibull distribution. It can also be viewed as a suitable model for fitting the right skewed, symmetric, left skewed and unimodal data. We provide a comprehensive account of some of its statistical properties. Some useful characterization results are presented. The maximum likelihood method is used to estimate the model parameters. We prove empirically the importance and flexibility of the new model in modeling two types of lifetime data. The proposed model is a better fit than the Poisson Topp Leone-Weibull, the Marshall Olkin extended-Weibull, gamma-Weibull , Kumaraswamy-Weibull , Weibull-Fréchet, beta-Weibull, transmuted modified-Weibull, Kumaraswamy transmuted- Weibull, modified beta-Weibull, Mcdonald-Weibull and transmuted exponentiated generalized-Weibull models so it is a good alternative to these models in modeling aircraft windshield data as well as the new lifetime model is much better than the Weibull-Weibull, odd Weibull-Weibull, Weibull Log-Weibull, the gamma exponentiated-exponential and exponential exponential-geometric models so it is a good alternative to these models in modeling the survival times of Guinea pigs. We hope that the new distribution will attract wider applications in reliability, engineering and other areas of research.
In this work, a new four-parameter zero-truncated Poisson Topp Leone Burr XII distribution is defined and studied. Various structural mathematical properties of the proposed model including ordinary and incomplete moments, residual and reversed residual life functions, generating functions, order statistics are investigated. Some useful characterizations are also presented.
A new class of continuous distributions called the generalized Burr X-G family is introduced. Some special models of the new family are provided. Some of its mathematical properties including explicit expressions for the quantile and generating functions, ordinary and incomplete moments, order statistics and Rényi entropy are derived. The maximum likelihood is used for estimating the model parameters. The flexibility of the generated family is illustrated by means of two applications to real data sets.
A new version of the Fréchet model is investigated and studied. Some of its properties are mathematically derived. The well-known maximum likelihood classical method is used in estimating the unknown parameters. The new version is much better than other important competitive Fréchet versions in modeling reliability real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.