The composition of the essential oils of Origanum and Thymus species restricted to Algeria and the North Africa region was determined. Antioxidant and antibacterial activities of the isolated essential oils were also determined. The oils of oregano plants were strongly characterized by p-cymene (16.8-24.9%), gamma-terpinene (16.8-24.9%), thymol (8.4-36.0%), and carvacrol (1.1-29.7%), a thymol chemotype for Origanum floribundum and a alpha-terpineol chemotype for Thymus numidicus being described for the first time. The strains of Listeria monocytogenes tested were relatively resistant to the action of essential oils of either Origanum or Thymus species. All essential oils possessed antioxidant activity, but this was dependent on the specific chemical composition and the method employed to determine such activity.
The current study aimed to evaluate the negative allelopathic effect of Eucalyptus citriodora essential oil on some of the most noxious weeds in Algeria (Sinapis arvensis, Sonchus oleraceus, Xanthium strumarium and Avena fatua). Gas chromatography-flame ionization detector (GC-FID) and GC/mass spectrometry (MS) were used to define the chemical composition of the oil. Citronellal (64.7%) and citronellol (10.9%) were the major essential oil compounds. Three concentrations of the oil were used for laboratory (0.01, 0.02 and 0.03%) and greenhouse (1, 2 and 3%) experiments. Seed germination and seedling's growth were drastically reduced in response to the oil concentrations where at 0.01 and 0.02% the oil drastically affects the seed germination of the tested weeds and at 0.03% the oil suppresses completely the germination of S. arvensis. The oil also exhibited strong allelopathic effect on the 3 - 4 leaf-stage plants 1 and 6 days after treatment. A completely death of S. arvensis, S. oleraceus and A. fatua and severe injuries on X. strumarium appeared at 3% of the oil. Chlorophyll content and membrane integrity were significantly affected after treatment of the plant weeds representing a severe reduction in total chlorophyll and cell membrane disruption. The study concludes that E. citriodora essential oil might has the potential use as bioherbicide and can constitute an alternative process of weed control.
Traditional medicine has been used worldwide for centuries to cure or prevent disease and for male or female contraception. Only a few studies have directly investigated the effects of herbal compounds on spermatozoa. In this study, essential oil from Thymus munbyanus was extracted and its effect on human spermatozoa in vitro was analysed. Gas chromatography and Gas chromatography-mass spectrometry analyses identified 64 components, accounting for 98.9% of the composition of the oil. The principal components were thymol (52.0%), γ-terpinene (11.0%), ρ-cymene (8.5%) and carvacrol (5.2%). Freshly ejaculated spermatozoa was exposed from control individuals to various doses of the essential oil for different time periods, and recorded the vitality, the mean motility, the movement characteristics (computer-aided sperm analysis), the morphology and the ability to undergo protein hyperphosphorylation and acrosomal reaction, which constitute two markers of sperm capacitation and fertilizing ability. In vitro, both the essential oil extracted from T. munbyanus and thymol, the principal compound present in this oil, impaired human sperm motility and its capacity to undergo hyperphosphorylation and acrosome reaction. These compounds may, therefore, be of interest in the field of reproductive biology, as potential anti-spermatic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.