Here, we present a theoretical framework for two-parameter semigroups of bounded linear operators on a Banach space. Our approach relies on a new definition of the infinitesimal generator of two-parameter semigroups. This definition, in the case of C0-two parameter semigroups, allows trajectory to be differentiable on the nonnegative cone of the plane, when the initial state is in the domain of this generator. We provide also the abstract Cauchy problem satisfied by these trajectories. We prove some theoretical and general results concerning relationships between this generator and the infinitesimal generators of the components. We investigate commutativity relations and precise the domains of their validity. We establish the extension of the Hille-Yoshida known for one-parameter semigroups. We provide some examples and we give an application to the product semigroup.
Re çu le 7 juin 2004 et en forme révisée le 7 mars 2005Nousétudions les propriétés spectrales locales du shift unilateralà poids opérateurs. Nous donnons une condition nécessaire et suffisante pour que l'adjoint satisfasse la propriété de l'extension unique (SVEP). Une condition suffisante pour satisfaire la propriété de Dunford (C) ainsi qu'une condition nécessaire pour satisfaire la condition de Bishop (β) seront données. Enfin, nous montrons que le shiftà poids opérateurs est décomposable si, et seulement si, il est quasinilpotent.
Resume. Dans cet article on donne un exemple d'operateur shift a poids quasinilpotent, tel que l'algebre fermee pour la topologie faible des operateurs, engendree par ce shift, contient un element dont le spectre non reduit a un point. Cet exemple constitue une reponse affirmative a la question 6 soulevee par A. L. Shields dans Weighted shift operators and analytic function theory,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.