Background
The demand for designing a new technology that can emphasize the complete removal of heavy metals increased as a result of the industrial revolution. Bioremediation was found to have a potent impact on the degradation of organic and inorganic environmental pollutants.
Main body
Bioremediation is a multidisciplinary technology that possesses safe, efficient, and low-cost characteristics. Also, one of the important features of bioremediation technology is the in-situ treatment which reduces the possibility of transmitting the contaminants to another site. The application of genetic engineering, to engineer a microorganism to acquire the ability to remove different types of heavy metals at a time or to generate a transgenic plant, is considered one of the new promising bioremediation approaches.
Short conclusion
Removal of heavy metal pollution still represents a big challenge for ecologists that’s why this review shed some light on bioremediation technology; its importance, mechanism of action, and prospects.
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-β1 (TGF-β1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.
A novel Cr(VI)-resistant haloalkaliphilic bacterial strain NRC-R, identified as Salipaludibacillus agaradhaerens, was isolated from hypersaline soda lakes and characterized for its Cr(VI) bioreduction efficiency. Strain NRC-R grew well and effectively reduced Cr(VI) under a wide range of sodium chloride, pH, shaking velocity and temperature, showing maximum Cr(VI) reduction at 8% NaCl, pH 10, 150 rpm and 35 °C, respectively. Strain NRC-R was able to grow and reduce Cr(VI) effectively in the presence of different heavy metals and oxyanions (Pb 2+ , Zn 2+ , Co 2+ , Mn 2+ , Ni 2+ , Mo 2+ , HPO 4 − , NO 3 − , SO 4 2− and HCO 3 − ). Furthermore, Fe 3+ and Cu 2+ significantly enhanced the Cr(VI) removal by about 1.5 fold. Strain NRC-R could reduce Cr(VI) using a variety of electron donors, exhibiting a maximum reduction in the presence of NADH and fructose. The bioremoval of Cr(VI) using strain NRC-R was due to direct enzymatic reduction and the chromate reductase activity was mainly detected in the bacterial cell membrane. Under the optimized conditions, strain NRC-R showed a remarkable Cr(VI) bioreduction with highest reduction rate of 240 uM/h. Cr(VI) concentrations of up to 3 mM (888.5 mg/L) and 4 mM (1177 mg/L) were completely reduced within 16 h and 32 h, respectively. TEM and SEM-EDX analyses confirmed the biosorption of chromium species into the cells. To the best of our knowledge, this is the first report about Cr(VI) reduction by S. agaradhaerens. In conclusion, S. agaradhaerens NRC-R was a highly efficient Cr(VI) reducing haloalkaliphilic bacterium that has a significant potential in the bioremediation of Cr(VI)-contaminated environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.