The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
CitationKim, Donggyu et al. "A CMOS-integrated quantum sensor based on nitrogen-vacancy centres."
Abstract-This study presents a novel technique for designing an ultra-wideband (UWB) filteringantenna with dual sharp band notches. This design is composed of a modified monopole antenna integrated with resonant structures. The monopole antenna is modified using microstrip transition between the feedline and the patch. In addition, block with a triangle-shaped slot is loaded on each side of the ordinary circular patch to produce wide bandwidth with better return loss and higher frequency skirt selectivity. The resonant structures are constructed using two double split ring resonators (DSRR) loaded above the ground plane of the antenna to produce dual band notches and filter out WiMAX (3.3-3.7 GHz) and HiperLAN2 (5.4-5.7 GHz) frequencies. The band notch position is controlled by varying the length of the DSRR. The reconfigurability feature is achieved by using two PIN diode switches employed in the two DSRR. The measured results show that the proposed filtering-antenna provides wide impedance bandwidth from 2.58 to 15.5 GHz with controllable dual sharp band notches for WiMAX and HiperLAN, peak realized gain of 4.96 dB and omnidirectional radiation pattern.
Silicon-based terahertz (THz) integrated circuits (ICs) have made rapid progress over the past decade. The demonstrated basic component performance, as well as the maturity of design tools and methodologies, have made it possible to build high-complexity THz integrated systems. Such implementations are undoubtedly highly attractive due to their low cost and high integration capability; however, their unique characteristics, both advantageous and disadvantageous, also call for research investigations into unconventional systematic architectures and novel THz applications. In this paper, we review Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.